

Structural Calculations

For

Park Residence

Single Family House Addition / Remodel

8244 SE 30th Street Mercer Island, WA 98040 (Parcel # 545230-0816)

Prepared By: Prepared Date: CS2 No.: Sung U. Cho, P.E. March 28, 2022 2207

Project:	8244 SE 30 th St (#545230-0816)	Date:	March 28, 2022
Location:	Mercer Island, WA	Prepared By:	S. Cho
CS2 No:	2207	Page	

I. Scope of Work

Provide structural design calculations of remodel construction of existing single-family residential house. The house is located on 8244 SE 30th Street at City of Mercer Island. The information in this report summarizes the requirements for construction of structural elements for the gravity loads and lateral loads resisting in conformance with the International Building Code 2018. The engineering of such structural elements and connections are designed to resist the vertical (gravity) loading particular to concrete foundation. Unless noted otherwise, all means and methods used shall be in keeping with good and generally accepted construction practices.

Please refer to the following calculations and supporting sketches as well as the architectural drawing package as provided by others.

II. Loads/Design Criteria: (IBC 2018 & ASCE 7-16)

Please refer to the following calculations

- 1. Dead Load See calculation
- 2. Live Load Roof = 25 psf (snow load)
- Floor = 40 psf
 - Deck = 60 psf
- 3. Seismic $S_S = 1.395g$, $S_1 = 0.486g$, $S_{DS} = 1.116g$, $S_{D1} = N/A$
 - Site Class D, I = 1.0, R = 6.5
- 4. Wind Exposure C, Basic Wind Speed (V_{3S}) = 98 mph, I = 1.0 (per ASCE)
- 5. Concrete compressive strength, f'c = 3,000 psi
- 6. Concrete steel reinforcing strength, fy = 60,000 psi
- 7. Allowable soil bearing pressure = 2,000 psf
- 8. Passive Soil Pressure = 250 pcf

References:

- 1. IBC 2018
- 2. ASCE 7-16
- 3. ACI 318-14
- 4. SPDWS 2015
- 5. NDS 2018

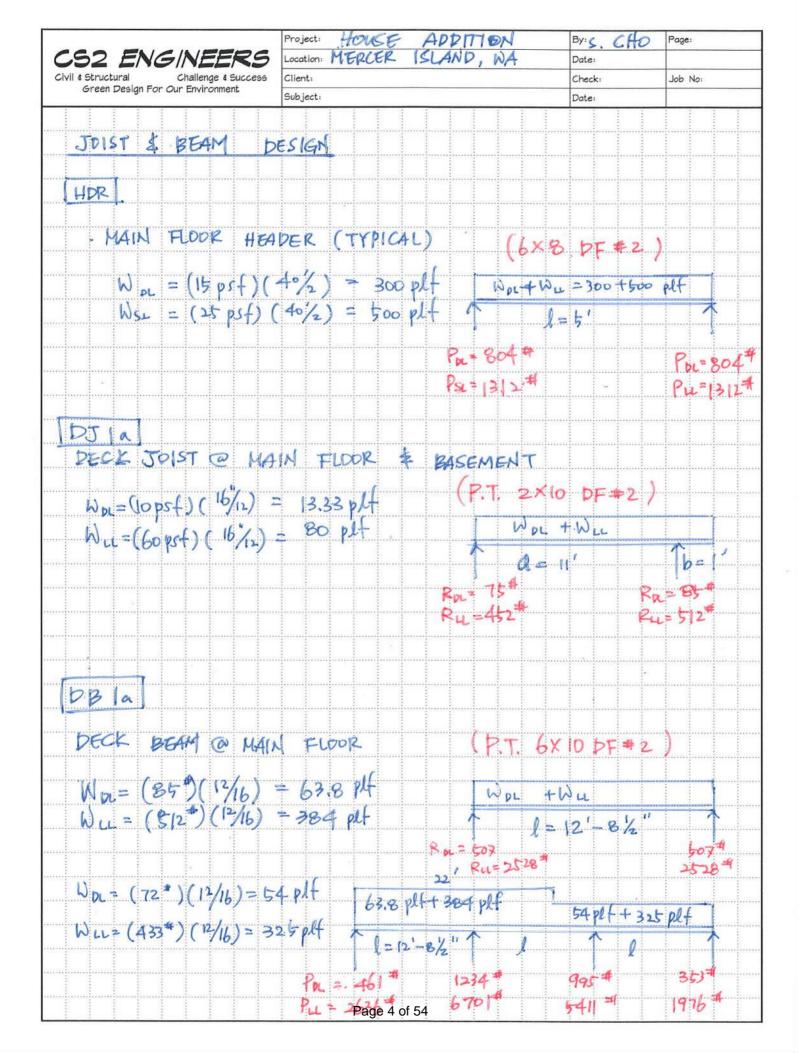
III. Conclusions and Recommendations

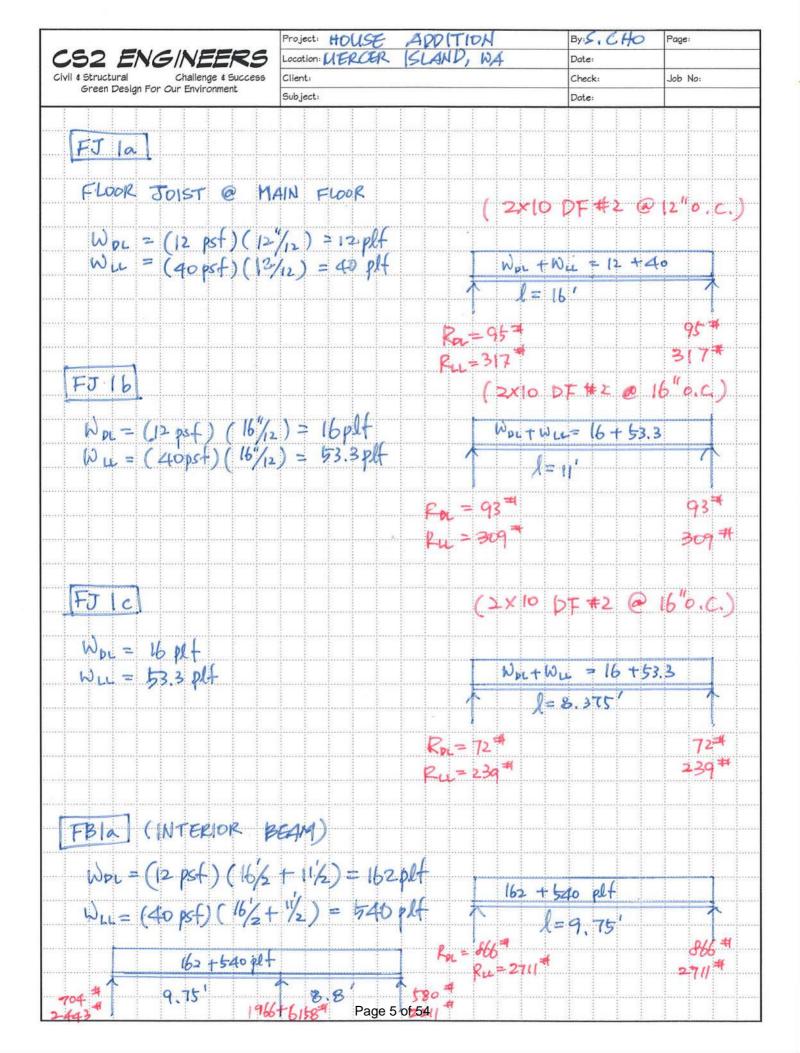
General contractor shall verify all existing dimensions, member sizes and conditions prior to commencing any work. All dimensions of existing condition shown on the reference are intended as guidelines only and must be verified in field. Any discrepancies shall be called to the attention of the architect or engineer and shall be resolved before proceeding with the work. Contractor shall provide temporary bracing for the structure and structural components until all final connections have been completed in accordance with the plans

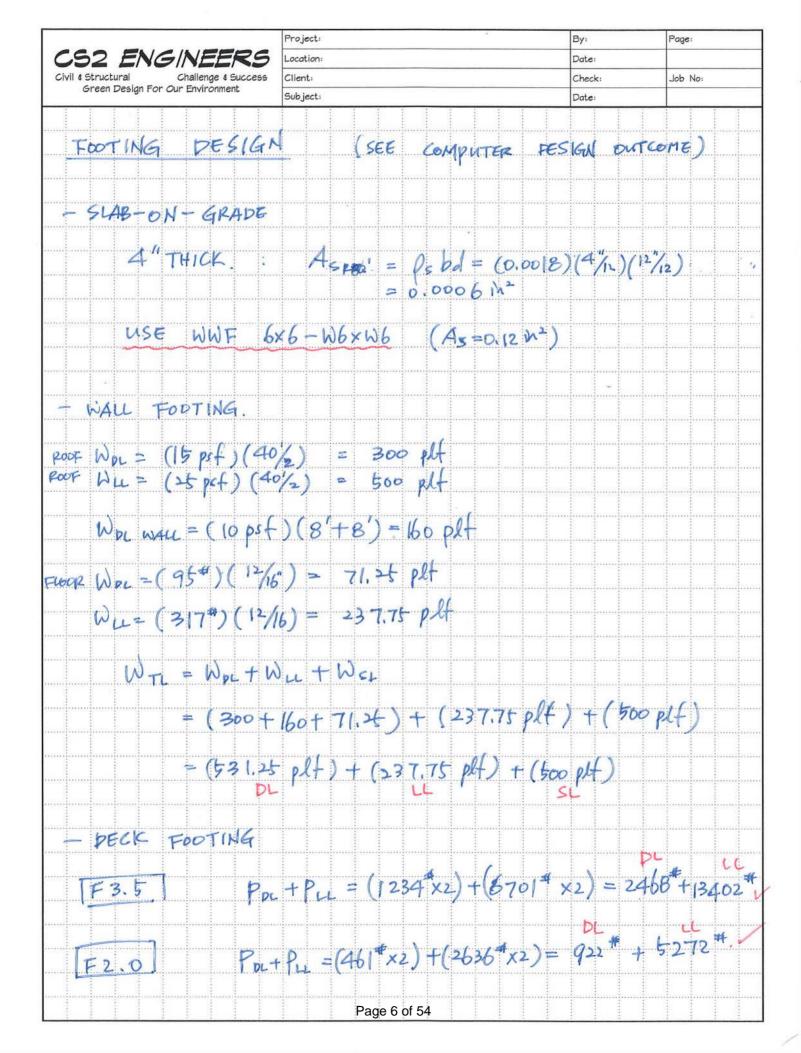
Project:	8244 SE 30 th St (#545230-0816)	Date:	March 28, 2022
Location:	Mercer Island, WA	Prepared By:	S. Cho
CS2 No:	2207	Page	

Gravity Load Design Calculation

CS2 ENG	NEE	5	Client:	Owner		Job No.:	2207
	Civil & Structural		By:	S. Cho		Date:	3/28/22
Challenge & Success		Subject:	Design Calculations		Page:		
esign & Loading Criteria							
Roof Dead Load:				Floor Dead Load:			
Roofing =	2.8	psf		Floor Cover =	1.0	psf	
Insulation =	2.5	psf		Insulation =	1.0	psf	
Roof sheathing =	1.7	psf		Floor sheathing =	2.7	psf	
Rafters @ 24" o.c. =	3.0	psf		Joists @ 16" o.c. =	2.8	psf	
5/8" GWB =	2.8	psf		5/8" GWB =	2.8	psf	
M & E =	0.5	psf		M & E =	1.0	psf	
Miscellaneous =	1.0	psf		Miscellaneous =	0.5	psf	
Roof dead load total =	14.3	psf		Floor dead load total =	11.8	psf	-
USE =	15.0	psf		USE =	12.0	psf	
Roof Live Load:	25	psf		Floor Live Load:	40	psf	
Total Roof Load =	40.0	psf		Total Floor Load =	52.0	psf	7

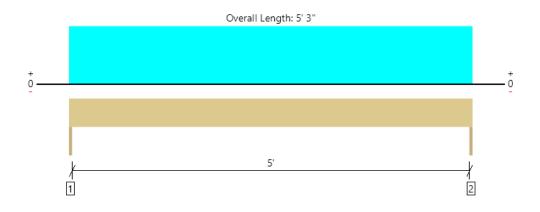

USE =	10.0	psf	
Wall dead load total =	9.3	psf	
Miscellaneous =	0.5	psf	
Siding =	2.0	psf	
Insulation =	1.0	psf	
Gypsum sheathing =	2.0	psf	
7/16" Sheathing =	1.8	psf	
2x Stud @ 16" o.c. =	2.0	psf	
Wall Dead Load:			


DESIGN REFERENCES:


ASCE 7-16, MINIMUM DESIGN LOADS FOR BUILDINGS AND OTHER STRUCTURE.
IBC 2018, INTERNATIONAL BUILDING CODE 2018.
ACI 318-14, BUILDING CODE REQUIREMENTS FOR STRUCTURAL CONCRETE AND COMMENTARY.
NDS 2018, NATIONAL DESIGN SPECIFICATION FOR WOOD CONSTRUCTION WITH COMMENTARY.
AWC SDRWS 2016, SPECIAL DESIGN DROVISIONS FOR WIND AND SEISMIC WITH

·AWC SDPWS-2015, SPECIAL DESIGN PROVISIONS FOR WIND AND SEISMIC WITH COMMENTARY.

·AISC 360-16, SPECIFICATION FOR STRUCTURAL STEEL BUILDINGS: STEEL DESIGN MANUAL


JOB SUMMARY REPORT

2207 Mercer Island House Addition

Roof			
Member Name	Results	Current Solution	Comments
Wall: Header	Passed	1 piece(s) 4 x 8 DF No.2	
Main Level			
Member Name	Results	Current Solution	Comments
Wall: Header (Exterior)	Passed	1 piece(s) 6 x 8 DF No.2	
Deck: Joist (DJ1a)	Passed	1 piece(s) 2 x 10 DF No.2 @ 16" OC	
Deck: Joist (DJ1b)	Passed	1 piece(s) 2 x 10 DF No.2 @ 16" OC	
Floor: Joist (FJ1a)	Passed	1 piece(s) 2 x 10 DF No.2 @ 12" OC	
Floor: Joist (FJ1b)	Passed	1 piece(s) 2 x 10 DF No.2 @ 16" OC	
Floor: Joist (FJ1c)	Passed	1 piece(s) 2 x 10 DF No.2 @ 16" OC	
Deck: Drop Beam	Passed	1 piece(s) 6 x 10 DF No.1	
Deck: Drop Beam	Passed	1 piece(s) 6 x 10 DF No.1	
Floor: Flush Beam(FB1a)	Passed	1 piece(s) 3 1/2" x 9 1/2" 2.2E Parallam® PSL	
Copy of Floor: Flush Beam(FB1a)	Passed	1 piece(s) 3 1/2" x 9 1/2" 2.2E Parallam® PSL	
Basement			
Member Name	Results	Current Solution	Comments
Deck: Joist	Passed	1 piece(s) 2 x 10 DF No.2 @ 16" OC	
Deck: Drop Beam	Passed	1 piece(s) 6 x 10 DF No.1	

Roof, Wall: Header 1 piece(s) 4 x 8 DF No.2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2117 @ 0	3281 (1.50")	Passed (65%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	1529 @ 8 3/4"	3502	Passed (44%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	2778 @ 2' 7 1/2"	3438	Passed (81%)	1.15	1.0 D + 1.0 S (All Spans)
Vert Live Load Defl. (in)	0.048 @ 2' 7 1/2"	0.175	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Vert Total Load Defl. (in)	0.078 @ 2' 7 1/2"	0.262	Passed (L/813)		1.0 D + 1.0 S (All Spans)
Lat Member Reaction (lbs)	193 @ 5' 3"	N/A	Passed (N/A)	1.60	1.0 D + 0.6 W
Lat Shear (Ibs)	162 @ 5"	4872	Passed (3%)	1.60	1.0 D + 0.6 W
Lat Moment (Ft-Ibs)	253 @ mid-span	2425	Passed (10%)	1.60	1.0 D + 0.6 W
Lat Deflection (in)	0.021 @ mid-span	0.350	Passed (L/999+)		1.0 D + 0.6 W
Bi-Axial Bending	0.58	1.00	Passed (58%)	1.60	1.0 D + 0.45 W + 0.75 L + 0.75 S

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

Lateral deflection criteria: Wind (L/180)

• Applicable calculations are based on NDS.

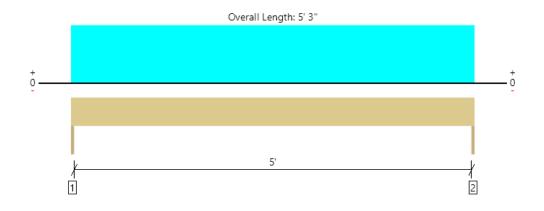
	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Snow	Total	Accessories
1 - Trimmer - HF	1.50"	1.50"	1.50"	804	1312	2116	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	804	1312	2116	None

Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	5' 3" o/c					
Bottom Edge (Lu)	5' 3" o/c					
Maximum allowable bracing intervise based on applied load						

Maximum allowable bracing intervals based on applied load.

Lateral Connections								
Supports	Plate Size	Plate Material	Connector	Type/Model	Quantity	Nailing		
Left	2X	Hem Fir	Nails	10d x 3" Box (End)	3			
Right	2X	Hem Fir	Nails	10d x 3" Box (End)	3			

			Dead	Snow	
Vertical Loads	Location	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 5' 3"	N/A	6.4		
1 - Uniform (PSF)	0 to 5' 3"	20'	15.0	25.0	Default Load


			Wind	
Lateral Load	Location	Tributary Width	(1.60)	Comments
1 - Uniform (PSF)	Full Length	4'	30.6	

• ASCE/SEI 7 Sec. 30.4: Exposure Category (C), Mean Roof Height (16' 9 5/8"), Topographic Factor (1.0), Wind Directionality Factor (0.85), Basic Wind Speed (115), Risk Category(II), Effective Wind Area determined using full member span and trib. width. • IBC Table 1604.3, footnote f: Deflection checks are performed using 42% of this lateral wind load.

ForteWEB Software Operator	Job Notes	
	8244 SE 30th Street Mercer Island, WA 98040 Page 8	of 54 Weyerhaeuser

Main Level, Wall: Header (Exterior) 1 piece(s) 6 x 8 DF No.2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2648 @ 0	5156 (1.50")	Passed (51%)		1.0 D + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	1891 @ 9"	5376	Passed (35%)	1.15	1.0 D + 0.75 L + 0.75 S (All Spans)
Moment (Ft-lbs)	3475 @ 2' 7 1/2"	3706	Passed (94%)	1.15	1.0 D + 0.75 L + 0.75 S (All Spans)
Vert Live Load Defl. (in)	0.042 @ 2' 7 1/2"	0.175	Passed (L/999+)		1.0 D + 0.75 L + 0.75 S (All Spans)
Vert Total Load Defl. (in)	0.069 @ 2' 7 1/2"	0.262	Passed (L/918)		1.0 D + 0.75 L + 0.75 S (All Spans)
Lat Member Reaction (lbs)	193 @ 5' 3"	N/A	Passed (N/A)	1.60	1.0 D + 0.6 W
Lat Shear (lbs)	150 @ 7"	7480	Passed (2%)	1.60	1.0 D + 0.6 W
Lat Moment (Ft-lbs)	253 @ mid-span	3781	Passed (7%)	1.60	1.0 D + 0.6 W
Lat Deflection (in)	0.007 @ mid-span	0.350	Passed (L/999+)		1.0 D + 0.6 W
Bi-Axial Bending	0.73	1.00	Passed (73%)	1.60	1.0 D + 0.45 W + 0.75 L + 0.75 S

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

Lateral deflection criteria: Wind (L/180)

• Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Snow	Total	Accessories
1 - Trimmer - HF	1.50"	1.50"	1.50"	1043	893	1247	3183	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	1043	893	1247	3183	None

Lateral Bracing	Bracing Intervals	Comments						
Top Edge (Lu)	5' 3" o/c							
Bottom Edge (Lu)	5' 3" o/c							
Maximum allowable bracing inten	Maximum allowable bracing intervals based on applied load							

Maximum allowable bracing intervals based on applied load.

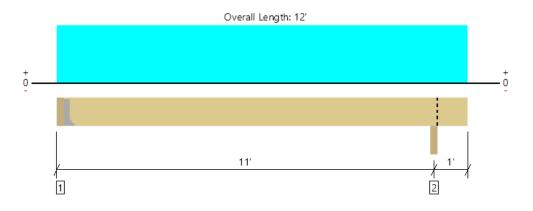
Lateral Connections										
Supports	Plate Size	Plate Material	Connector	Type/Model	Quantity	Nailing				
Left	2X	Hem Fir	Nails	8d x 2.5" Box (Toe)	3					
Right	2X	Hem Fir	Nails	8d x 2.5" Box (Toe)	3					

			Dead	Floor Live	Snow	
Vertical Loads	Location	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 5' 3"	N/A	10.4			
1 - Uniform (PSF)	0 to 5' 3"	19'	15.0	-	25.0	Roof Load
2 - Uniform (PSF)	0 to 5' 3"	8' 6"	12.0	40.0	-	Floor Load

			Wind	
Lateral Load	Location	Tributary Width	(1.60)	Comments
1 - Uniform (PSF)	Full Length	4'	30.6	

• ASCE/SEI 7 Sec. 30.4: Exposure Category (C), Mean Roof Height (16' 9 5/8"), Topographic Factor (1.0), Wind Directionality Factor (0.85), Basic Wind Speed (115), Risk Category(II), Effective Wind

Area determined using full member span and trib. width. • IBC Table 1604.3, footnote f: Deflection checks are performed using 42% of this lateral wind load.


ForteWEB Software Operator	Job Notes]
	8244 SE 30th Street Mercer Island, WA 98040 Page 9	of 54 Weyerhaeuser

4/19/2022 3:08:03 AM UTC ForteWEB v3.2, Engine: V8.2.0.17, Data: V8.1.0.16 File Name: 2207 Mercer Island House Addition Page 4 / 19

Main Level, Deck: Joist (DJ1a) 1 piece(s) 2 x 10 DF No.2 @ 16" OC

PASSED

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	499 @ 3 1/2"	1406 (1.50")	Passed (35%)		1.0 D + 1.0 L (Alt Spans)
Shear (lbs)	427 @ 1' 3/4"	1665	Passed (26%)	1.00	1.0 D + 1.0 L (Alt Spans)
Moment (Ft-lbs)	1334 @ 5' 7 11/16"	2029	Passed (66%)	1.00	1.0 D + 1.0 L (Alt Spans)
Live Load Defl. (in)	0.150 @ 5' 7 3/4"	0.268	Passed (L/859)		1.0 D + 1.0 L (Alt Spans)
Total Load Defl. (in)	0.174 @ 5' 7 3/4"	0.535	Passed (L/739)		1.0 D + 1.0 L (Alt Spans)
TJ-Pro [™] Rating	N/A	N/A	N/A		N/A

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

Deflection criteria: LL (L/480) and TL (L/240).

• Overhang deflection criteria: LL (2L/480) and TL (2L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

• Applicable calculations are based on NDS.

• No composite action between deck and joist was considered in analysis.

	Bearing Length			Loads t	o Supports		
Supports	Total	Available	Required	Dead	Floor Live	Total	Accessories
1 - Hanger on 9 1/4" HF beam	3.50"	Hanger ¹	1.50"	75	452	527	See note 1
2 - Beam - HF	3.50"	3.50"	1.50"	85	512	597	Blocking

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments					
Top Edge (Lu)	9' 2" o/c						
Bottom Edge (Lu)	11' 9" o/c						
Maximum allowable bracing intervals based on applied load.							

Connector: Simpson Strong-Tie									
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories			
1 - Face Mount Hanger	LU28	1.50"	N/A	8-10dx1.5	6-10dx1.5				

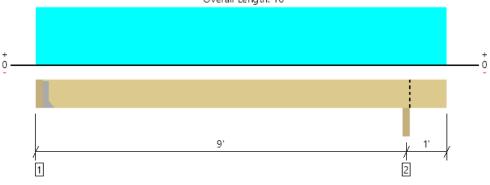
• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Floor Live	
Vertical Load	Location (Side)	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 12'	16"	10.0	60.0	Deck Load

Member Notes

Deck Joist (DJ1a)

ForteWEB Software Operator Sung Cho CS2 Engineers.com (425) 408-2748 sung.cho@cs2engineers.com Job Notes 8244 SE 30th Street Mercer Island, WA 98040



4/19/2022 3:08:03 AM UTC ForteWEB v3.2, Engine: V8.2.0.17, Data: V8.1.0.16 File Name: 2207 Mercer Island House Addition Page 6 / 19

Main Level, Deck: Joist (DJ1b) 1 piece(s) 2 x 10 DF No.2 @ 16" OC

Overall Length: 10'

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	406 @ 3 1/2"	1406 (1.50")	Passed (29%)		1.0 D + 1.0 L (Alt Spans)
Shear (lbs)	334 @ 1' 3/4"	1665	Passed (20%)	1.00	1.0 D + 1.0 L (Alt Spans)
Moment (Ft-lbs)	881 @ 4' 7 5/8"	2029	Passed (43%)	1.00	1.0 D + 1.0 L (Alt Spans)
Live Load Defl. (in)	0.065 @ 4' 7 3/4"	0.218	Passed (L/999+)		1.0 D + 1.0 L (Alt Spans)
Total Load Defl. (in)	0.076 @ 4' 7 3/4"	0.435	Passed (L/999+)		1.0 D + 1.0 L (Alt Spans)
TJ-Pro [™] Rating	N/A	N/A	N/A		N/A

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

PASSED

Deflection criteria: LL (L/480) and TL (L/240).

• Overhang deflection criteria: LL (2L/480) and TL (2L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

• Applicable calculations are based on NDS.

• No composite action between deck and joist was considered in analysis.

	Bearing Length			Loads t	o Supports		
Supports	Total	Available	Required	Dead	Floor Live	Total	Accessories
1 - Hanger on 9 1/4" HF beam	3.50"	Hanger ¹	1.50"	61	372	433	See note 1
2 - Beam - HF	3.50"	3.50"	1.50"	72	433	505	Blocking

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments			
Top Edge (Lu)	9' 9" o/c				
Bottom Edge (Lu)	9' 9" o/c				
Maximum allowable bracing intervals based on applied load.					

•Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie							
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories	
1 - Face Mount Hanger	LU28	1.50"	N/A	8-10dx1.5	6-10dx1.5		

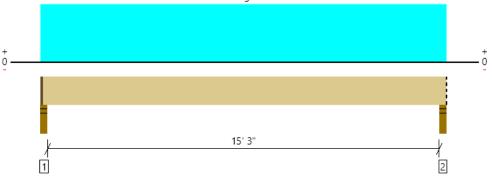
• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Floor Live	
Vertical Load	Location (Side)	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 10'	16"	10.0	60.0	Deck Load

Member Notes

Deck Joist (DJ1b)

ForteWEB Software Operator Sung Cho CS2 Engineers.com (425) 408-2748 sung.cho@cs2engineers.com Job Notes 8244 SE 30th Street Mercer Island, WA 98040



4/19/2022 3:08:03 AM UTC ForteWEB v3.2, Engine: V8.2.0.17, Data: V8.1.0.16 File Name: 2207 Mercer Island House Addition Page 8 / 19

Main Level, Floor: Joist (FJ1a) 1 piece(s) 2 x 10 DF No.2 @ 12" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	406 @ 2 1/2"	1367 (2.25")	Passed (30%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	356 @ 1' 3/4"	1665	Passed (21%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	1545 @ 7' 11"	2029	Passed (76%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.321 @ 7' 11"	0.385	Passed (L/576)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.418 @ 7' 11"	0.771	Passed (L/443)		1.0 D + 1.0 L (All Spans)
TJ-Pro [™] Rating	N/A	N/A	N/A		N/A

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

· Allowed moment does not reflect the adjustment for the beam stability factor.

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

· Applicable calculations are based on NDS.

· No composite action between deck and joist was considered in analysis.

	Bearing Length			Loads t	o Supports (
Supports	Total	Available	Required	Dead	Floor Live	Total	Accessories
1 - Stud wall - HF	3.50"	2.25"	1.50"	95	317	412	1 1/4" Rim Board
2 - Stud wall - HF	3.50"	3.50"	1.50"	95	317	412	Blocking

• Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	7' 2" o/c	
Bottom Edge (Lu)	15' 9" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Load	Location (Side)	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 15' 10"	12"	12.0	40.0	Default Load

Member Notes

Floor joist (FJ1a)

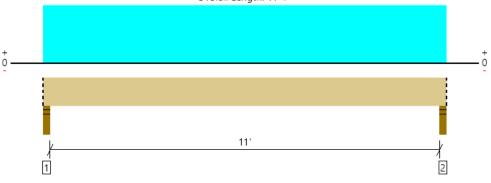
Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by S. Cho

ForteWEB Software Operator Job Notes Suna Cho 8244 SE 30th Street CS2 Engineers.com (425) 408-2748 sung.cho@cs2engineers.com

Mercer Island, WA 98040



4/19/2022 3:08:03 AM UTC ForteWEB v3.2, Engine: V8.2.0.17, Data: V8.1.0.16 File Name: 2207 Mercer Island House Addition Page 10 / 19

Main Level, Floor: Joist (FJ1b) 1 piece(s) 2 x 10 DF No.2 @ 16" OC

Overall Length: 11' 7"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	402 @ 2 1/2"	2126 (3.50")	Passed (19%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	328 @ 1' 3/4"	1665	Passed (20%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	1081 @ 5' 9 1/2"	2029	Passed (53%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.118 @ 5' 9 1/2"	0.279	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.153 @ 5' 9 1/2"	0.558	Passed (L/874)		1.0 D + 1.0 L (All Spans)
TJ-Pro [™] Rating	N/A	N/A	N/A		N/A

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

PASSED

• Deflection criteria: LL (L/480) and TL (L/240).

· Allowed moment does not reflect the adjustment for the beam stability factor.

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

· Applicable calculations are based on NDS.

· No composite action between deck and joist was considered in analysis.

	Bearing Length			Loads t	o Supports (
Supports	Total	Available	Required	Dead	Floor Live	Total	Accessories
1 - Stud wall - HF	3.50"	3.50"	1.50"	93	309	402	Blocking
2 - Stud wall - HF	3.50"	3.50"	1.50"	93	309	402	Blocking

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments			
Top Edge (Lu)	11' 7" o/c				
Bottom Edge (Lu)	11' 7" o/c				
Maximum allowable bracing intervals based on applied load					

mum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Load	Location (Side)	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 11' 7"	16"	12.0	40.0	Default Load

Member Notes Floor joist (FJ1b)

Weyerhaeuser Notes

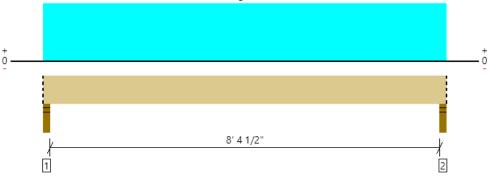
Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library

The product application, input design loads, dimensions and support information have been provided by S. Cho

Job Notes

ForteWEB Software Operator Suna Cho CS2 Engineers.com (425) 408-2748 sung.cho@cs2engineers.com

8244 SE 30th Street Mercer Island, WA 98040



4/19/2022 3:08:03 AM UTC ForteWEB v3.2, Engine: V8.2.0.17, Data: V8.1.0.16 File Name: 2207 Mercer Island House Addition Page 11 / 19

Main Level, Floor: Joist (FJ1c) 1 piece(s) 2 x 10 DF No.2 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	311 @ 2 1/2"	2126 (3.50")	Passed (15%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	237 @ 1' 3/4"	1665	Passed (14%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	632 @ 4' 5 3/4"	2029	Passed (31%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.040 @ 4' 5 3/4"	0.214	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.052 @ 4' 5 3/4"	0.427	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
TJ-Pro [™] Rating	N/A	N/A	N/A		N/A

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

Applicable calculations are based on NDS.

· No composite action between deck and joist was considered in analysis.

	Bearing Length			Loads t	o Supports		
Supports	Total	Available	Required	Dead	Floor Live	Total	Accessories
1 - Stud wall - HF	3.50"	3.50"	1.50"	72	239	311	Blocking
2 - Stud wall - HF	3.50"	3.50"	1.50"	72	239	311	Blocking

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	9' o/c					
Bottom Edge (Lu)	9' o/c					
Maximum allowable bracing intervals based on applied load						

Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Load	Location (Side)	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 8' 11 1/2"	16"	12.0	40.0	Default Load

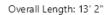
Member Notes

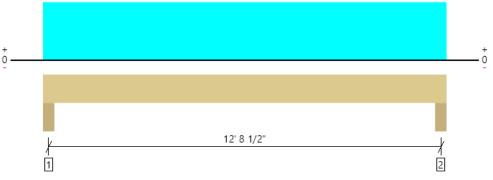
Floor joist (FJ1b)

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by S. Cho


ForteWEB Software Operator Sung Cho CS2 Engineers.com (425) 408-2748 sung.cho@cs2engineers.com Job Notes 8244 SE 30th Street Mercer Island, WA 98040



4/19/2022 3:08:03 AM UTC ForteWEB v3.2, Engine: V8.2.0.17, Data: V8.1.0.16 File Name: 2207 Mercer Island House Addition Page 12 / 19

Main Level, Deck: Drop Beam 1 piece(s) 6 x 10 DF No.1

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	3035 @ 4"	18906 (5.50")	Passed (16%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	2459 @ 1' 3"	5922	Passed (42%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	9004 @ 6' 7"	9307	Passed (97%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.335 @ 6' 7"	0.417	Passed (L/447)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.403 @ 6' 7"	0.625	Passed (L/372)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

• Lumber grading provisions must be extended over the length of the member per NDS 4.2.5.5.

• Applicable calculations are based on NDS.

	Bearing Length			Loads t	o Supports (
Supports	Total	Available	Required	Dead	Floor Live	Total	Accessories
1 - Column - HF	5.50"	5.50"	1.50"	507	2528	3035	None
2 - Column - HF	5.50"	5.50"	1.50"	507	2528	3035	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	13' 2" o/c	
Bottom Edge (Lu)	13' 2" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 13' 2"	N/A	13.2		
1 - Uniform (PLF)	0 to 13' 2" (Top)	N/A	63.8	384.0	Linked from: Deck: Joist, Support 2

Member Notes

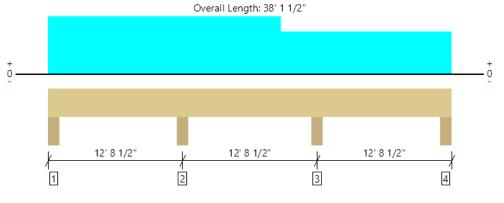
Deck Beam (DB1a)

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by S. Cho

ForteWEB Software Operator	
Sung Cho	
CS2 Engineers.com	
(425) 408-2748	
sung.cho@cs2engineers.com	


Job Notes 8244 SE 30th Street Mercer Island, WA 98040

4/19/2022 3:08:03 AM UTC ForteWEB v3.2, Engine: V8.2.0.17, Data: V8.1.0.16 File Name: 2207 Mercer Island House Addition Page 13 / 19

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	7935 @ 12' 8 1/2"	18906 (5.50")	Passed (42%)		1.0 D + 1.0 L (Adj Spans)
Shear (lbs)	3550 @ 11' 8 1/4"	5922	Passed (60%)	1.00	1.0 D + 1.0 L (Adj Spans)
Moment (Ft-lbs)	-9520 @ 12' 8 1/2"	9307	Passed (102%)	1.00	1.0 D + 1.0 L (Adj Spans)
Live Load Defl. (in)	0.281 @ 6' 3 1/16"	0.412	Passed (L/528)		1.0 D + 1.0 L (Alt Spans)
Total Load Defl. (in)	0.318 @ 6' 2 3/8"	0.619	Passed (L/466)		1.0 D + 1.0 L (Alt Spans)

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

• Lumber grading provisions must be extended over the length of the member per NDS 4.2.5.5.

· Applicable calculations are based on NDS.

	Bearing Length			Loads t	o Supports (
Supports	Total	Available	Required	Dead	Floor Live	Total	Accessories
1 - Column - HF	5.50"	5.50"	1.50"	461	2636/-288	3097/- 288	None
2 - Column - HF	5.50"	5.50"	2.31"	1234	6701	7935	None
3 - Column - HF	5.50"	5.50"	1.86"	995	5411	6406	None
4 - Column - HF	5.50"	5.50"	1.50"	353	1976/-278	2329/- 278	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	38' 2" o/c	
Bottom Edge (Lu)	6" o/c	

•Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	Dead (0.90)	Floor Live (1.00)	Comments
0 - Self Weight (PLF)	0 to 38' 1 1/2"	N/A	13.2		
1 - Uniform (PSF)	0 to 22' (Top)	7' 6"	10.0	60.0	
2 - Uniform (PSF)	22' to 38' 1 1/2" (Top)	5' 6"	10.0	60.0	

Member Notes

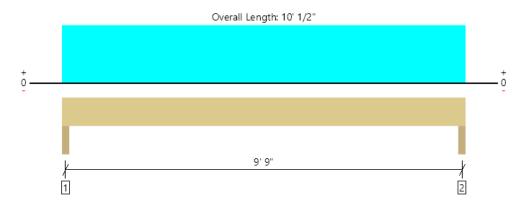
Deck Beam (DB1a)

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by S. Cho

Job Notes


ForteWEB Software Operator Sung Cho CS2 Engineers.com (425) 408-2748 sung.cho@cs2engineers.com

8244 SE 30th Street Mercer Island, WA 98040

4/19/2022 3:08:03 AM UTC ForteWEB v3.2, Engine: V8.2.0.17, Data: V8.1.0.16 File Name: 2207 Mercer Island House Addition Page 14 / 19

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	3577 @ 2"	7656 (3.50")	Passed (47%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	2805 @ 1' 1"	6428	Passed (44%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	8393 @ 5' 1/4"	13057	Passed (64%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.216 @ 5' 1/4"	0.243	Passed (L/539)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.285 @ 5' 1/4"	0.485	Passed (L/408)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length		Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Total	Accessories
1 - Column - HF	3.50"	3.50"	1.64"	866	2711	3577	None
2 - Column - HF	3.50"	3.50"	1.64"	866	2711	3577	None

Bracing Intervals	Comments
10' 1" o/c	
10' 1" o/c	
	10' 1" o/c

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 10' 1/2"	N/A	10.4		
1 - Uniform (PSF)	0 to 10' 1/2" (Front)	8'	12.0	40.0	Default Load
2 - Uniform (PSF)	0 to 10' 1/2" (Back)	5' 6"	12.0	40.0	Default Load

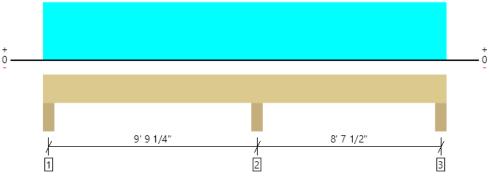
Member Notes

Interior Floor Beam (FB1a)

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by S. Cho


ForteWEB Software Operator	Job Notes
	8244 SE 30th Street Mercer Island, WA 98040

Main Level, Copy of Floor: Flush Beam(FB1a) 1 piece(s) 3 1/2" x 9 1/2" 2.2E Parallam® PSL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	8124 @ 10'	12031 (5.50")	Passed (68%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	3487 @ 8' 11 3/4"	6428	Passed (54%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	-7452 @ 10'	13057	Passed (57%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.152 @ 4' 10 9/16"	0.242	Passed (L/764)		1.0 D + 1.0 L (Alt Spans)
Total Load Defl. (in)	0.187 @ 4' 9 3/4"	0.483	Passed (L/620)		1.0 D + 1.0 L (Alt Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Floor Live	Total	Accessories
1 - Column - HF	5.50"	5.50"	1.50"	704	2443/-238	3147/- 238	None
2 - Column - HF	5.50"	5.50"	3.71"	1966	6158	8124	None
3 - Column - HF	5.50"	5.50"	1.50"	580	2211/-393	2791/- 393	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	18' 10" o/c	
Bottom Edge (Lu)	18' 10" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 18' 10 1/4"	N/A	10.4		
1 - Uniform (PSF)	0 to 18' 10 1/4" (Front)	8'	12.0	40.0	Default Load
2 - Uniform (PSF)	0 to 18' 10 1/4" (Back)	5' 6"	12.0	40.0	Default Load

Member Notes

Interior Floor Beam (FB1a)

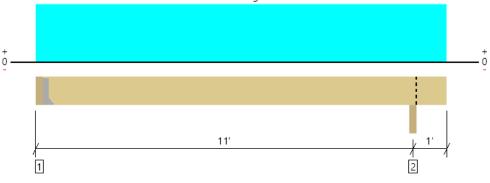
Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by S. Cho

ForteWEB Software Operator
Sung Cho CS2 Engineers.com
(425) 408-2748
sung.cho@cs2engineers.com

Job Notes 8244 SE 30th Street Mercer Island, WA 98040


4/19/2022 3:08:03 AM UTC ForteWEB v3.2, Engine: V8.2.0.17, Data: V8.1.0.16 File Name: 2207 Mercer Island House Addition Page 16 / 19

Basement, Deck: Joist 1 piece(s) 2 x 10 DF No.2 @ 16" OC

PASSED

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	499 @ 3 1/2"	1406 (1.50")	Passed (35%)		1.0 D + 1.0 L (Alt Spans)
Shear (lbs)	427 @ 1' 3/4"	1665	Passed (26%)	1.00	1.0 D + 1.0 L (Alt Spans)
Moment (Ft-lbs)	1334 @ 5' 7 11/16"	2029	Passed (66%)	1.00	1.0 D + 1.0 L (Alt Spans)
Live Load Defl. (in)	0.150 @ 5' 7 3/4"	0.268	Passed (L/859)		1.0 D + 1.0 L (Alt Spans)
Total Load Defl. (in)	0.174 @ 5' 7 3/4"	0.535	Passed (L/739)		1.0 D + 1.0 L (Alt Spans)
TJ-Pro [™] Rating	N/A	N/A	N/A		N/A

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

Deflection criteria: LL (L/480) and TL (L/240).

• Overhang deflection criteria: LL (2L/480) and TL (2L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

• Applicable calculations are based on NDS.

No composite action between deck and joist was considered in analysis.

	Bearing Length			Loads t	o Supports ((lbs)	
Supports	Total	Available	Required	Dead	Floor Live	Total	Accessories
1 - Hanger on 9 1/4" HF beam	3.50"	Hanger ¹	1.50"	75	452	527	See note 1
2 - Beam - DF	3.50"	3.50"	1.50"	85	512	597	Blocking

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	9' 2" o/c	
Bottom Edge (Lu)	11' 9" o/c	
•Maximum allowable bracing interv	als based on applied load.	

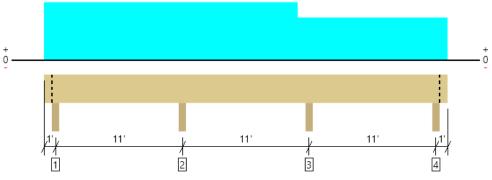
Connector: Simpson Strong-T	ie					
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1 - Face Mount Hanger	LU28	1.50"	N/A	8-10dx1.5	6-10dx1.5	

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Floor Live	
Vertical Load	Location (Side)	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 12'	16"	10.0	60.0	Deck Load

Member Notes

Deck Joist


ForteWEB Software Operator Sung Cho CS2 Engineers.com (425) 408-2748 sung.cho@cs2engineers.com Job Notes 8244 SE 30th Street Mercer Island, WA 98040

4/19/2022 3:08:03 AM UTC ForteWEB v3.2, Engine: V8.2.0.17, Data: V8.1.0.16 File Name: 2207 Mercer Island House Addition Page 17 / 19

Overall Length: 35'

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	7025 @ 12'	12031 (3.50")	Passed (58%)		1.0 D + 1.0 L (Adj Spans)
Shear (lbs)	3129 @ 11' 3/4"	5922	Passed (53%)	1.00	1.0 D + 1.0 L (Adj Spans)
Moment (Ft-lbs)	-7452 @ 12'	9307	Passed (80%)	1.00	1.0 D + 1.0 L (Adj Spans)
Live Load Defl. (in)	0.175 @ 6' 2 15/16"	0.367	Passed (L/756)		1.0 D + 1.0 L (Alt Spans)
Total Load Defl. (in)	0.197 @ 6' 2 3/8"	0.550	Passed (L/669)		1.0 D + 1.0 L (Alt Spans)

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

Overhang deflection criteria: LL (2L/360) and TL (2L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

• Lumber grading provisions must be extended over the length of the member per NDS 4.2.5.5.

Applicable calculations are based on NDS.

	Bearing Length L		Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Total	Accessories
1 - Column - HF	3.50"	3.50"	1.50"	478	2681	3159	Blocking
2 - Column - HF	3.50"	3.50"	2.04"	1084	5941	7025	None
3 - Column - HF	3.50"	3.50"	1.71"	902	4972	5874	None
4 - Column - HF	3.50"	3.50"	1.50"	365	2005	2370	Blocking

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	35' o/c	
Bottom Edge (Lu)	35' o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 35'	N/A	13.2		
1 - Uniform (PSF)	0 to 22' (Top)	7' 6"	10.0	60.0	
2 - Uniform (PSF)	22' to 35' (Top)	5' 6"	10.0	60.0	

Member Notes

Deck Beam (DB1a)

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

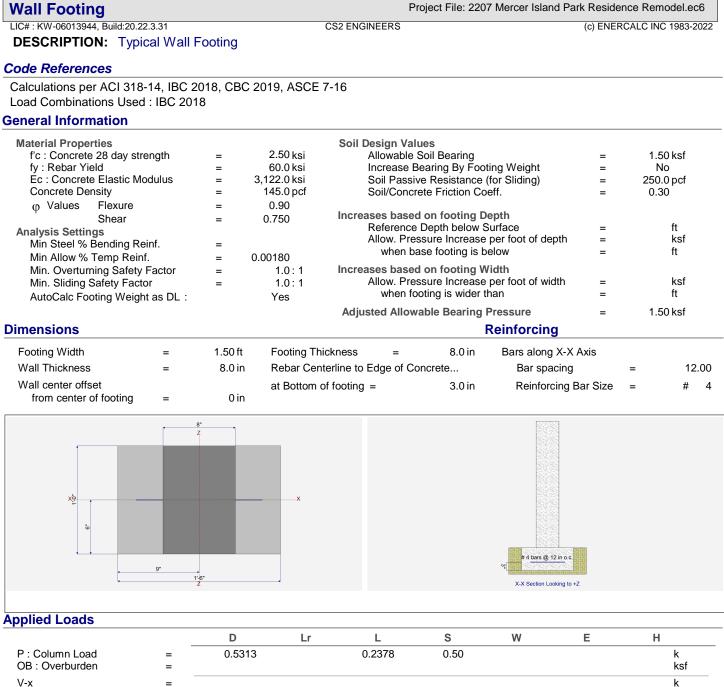
The product application, input design loads, dimensions and support information have been provided by S. Cho

 ForteWEB Software Operator
 Job Notes

 Sung Cho
 8244 SE 30th Street

 CS2 Engineers.com
 Mercer Island, WA 98040

 (425) 408-2748
 sung.cho@cs2engineers.com



4/19/2022 3:08:03 AM UTC ForteWEB v3.2, Engine: V8.2.0.17, Data: V8.1.0.16 File Name: 2207 Mercer Island House Addition Page 19 / 19

P.O. Box 13423 CS2 ENGINEERS Mill Creek, WA 98082 TEL. 425.408.2748 info@cs2engineers.com

Project Title: Engineer: Project ID: Project Descr:

M-zz

Vx applied

=

in above top of footing

k-ft

CS2 ENGINEERS Challenge & Success - Civil & Structural Challenge & Success - Civil & Structural Project Title: Engineer: Project ID: Project Descr:

Wall Footing LIC# : KW-06013944, Build:20.22.3.31

CS2

Project File: 2207 Mercer Island Park Residence Remodel.ec6

(c) ENERCALC INC 1983-2022

DESCRIPTION: Typical Wall Footing

IGN SU	MMARY				Design OK
Fa	ctor of Safety	Item	Applied	Capacity	Governing Load Combinatio
PASS	n/a	Overturning - Z-Z	0.0 k-ft	0.0 k-ft	No Overturning
PASS	n/a	Sliding - X-X	0.0 k	0.0 k	No Sliding
PASS	n/a	Uplift	0.0 k	0.0 k	No Uplift
Ut	ilization Ratio	Item	Applied	Capacity	Governing Load Combination
PASS	0.5465	Soil Bearing	0.8198 ksf	1.50 ksf	+D+0.750L+0.750S
PASS	0.02335	Z Flexure (+X)	0.1001 k-ft	4.288 k-ft	+1.20D+0.50L+1.60S
PASS	0.008214	Z Flexure (-X)	0.03522 k-ft	4.288 k-ft	+0.90D
PASS	n/a	1-way Shear (+X)	0.0 psi	75.0 psi	n/a
PASS	0.0	1-way Shear (-X)	0.0 psi	0.0 psi	n/a

CS2 ENGINEERS

Detailed Results

Soil Bearing								
Rotation Axis & Load Combination		G	ross Allowable	Хесс	Actual Soil B -X	earing Stress +X	Actual / All Ratio	
, D Only			1.50 ksf	0.0 in	0.4509 ksf	0.4509 ksf	(0.301
, +D+L			1.50 ksf	0.0 in		0.6094 ksf		0.406
, +D+S			1.50 ksf	0.0 in	0.7842 ksf	0.7842 ksf	(0.523
, +D+0.750L			1.50 ksf	0.0 in		0.5698 ksf		0.380
, +D+0.750L+0.750S			1.50 ksf	0.0 in		0.8198 ksf		0.547
, +0.60D			1.50 ksf	0.0 in		0.2705 ksf		0.180
Overturning Stability			1.00 1.01	0.0 11	0.2100 101	0.2100 101	Units : k-f	
Rotation Axis &		0.10	rturning Momont		Posisting Moment	Stability Patia	Statu	10
Load Combination		Ove	rturning Moment		Resisting Moment	Stability Ratio	Statt	JS
Footing Has NO Overturning Sliding Stability								
Force Application Axis								
Load Combination		:	Sliding Force		Resisting Force	Sliding SafetyRa	tio Statu	JS
Footing Has NO Sliding								
Footing Flexure								
Flexure Axis & Load Combination	n Mu		Tension @ Bot.	As Req'd	Gvrn. As	Actual As	Phi*Mn	
	k-ft	Side ?	or Top ?	in^2	in^2	in^2	k-ft	Status
, +1.40D	0.05479	-X	Bottom	0.1728	Min Temp %	0.2	4.288	OK
, +1.40D	0.05479	+X	Bottom	0.1728	Min Temp %	0.2	4.288	OK
, +1.20D+1.60L	0.06898	-X	Bottom	0.1728	Min Temp %	0.2	4.288	OK
, +1.20D+1.60L	0.06898	+X	Bottom	0.1728	Min Temp %	0.2	4.288	OK
+1.20D+1.60L+0.50S	0.08345	-X	Bottom	0.1728	Min Temp %	0.2	4.288	OK
, +1.20D+1.60L+0.50S	0.08345	+X	Bottom	0.1728	Min Temp %	0.2	4.288	OK
, +1.20D+0.50L	0.05384	-X	Bottom	0.1728	Min Temp %	0.2	4.288	ÖK
, +1.20D+0.50L	0.05384	+X		0.1728	Min Temp %	0.2	4.288	OK
, +1.20D	0.04696	-X		0.1728	Min Temp %	0.2	4.288	OK
, +1.20D	0.04696	+X		0.1728	Min Temp %	0.2	4.288	OK
, +1.20D+0.50L+1.60S	0.1001	-X		0.1728	Min Temp %	0.2	4.288	OK
, +1.20D+0.50L+1.60S	0.1001	+X		0.1720	Min Temp %	0.2	4.288	OK
, +1.20D+1.60S	0.09326	-X		0.1728	Min Temp %	0.2	4.288	OK
, +1.20D+1.60S	0.09326	-^ +X		0.1728	Min Temp %	0.2	4.288	OK
,		+^ -X		0.1728	•	0.2		OK
, +1.20D+0.50L+0.50S	0.06831				Min Temp %		4.288	
, +1.20D+0.50L+0.50S	0.06831	+X		0.1728	Min Temp %	0.2	4.288	OK
, +1.20D+0.50L+0.70S	0.0741	-X		0.1728	Min Temp %	0.2	4.288	OK
, +1.20D+0.50L+0.70S	0.0741	+X		0.1728	Min Temp %	0.2	4.288	OK
, +0.90D	0.03522	-X		0.1728	Min Temp %	0.2	4.288	OK
, +0.90D One Way Shear	0.03522	+X	Bottom	0.1728	Min Temp %	0.2	4.288 Units : k	OK
	V @ V	V @		VuiMey	Dh: Vn	\/ / Dh:*\/		4
Load Combination +1.40D	Vu @ -X	Vu @	-	Vu:Max	Phi Vn	Vu / Phi*Vn 0		itus OK
+1.40D +1.20D+1.60L		psi	0 psi 0 psi	0 p		0		OK OK
+1.20D+1.60L +1.20D+1.60L+0.50S		psi psi	0 psi 0 psi	0 p		0		OK
+1.20DT1.00LT0.303	0	pai	0 psi	0 p	73 73 psi	0		UN

P.O. Box 13423 TEL. 425.408.2748 info@cs2engineers.com Project Title: Engineer: Project ID: Project Descr:

Wall Footing

LIC# : KW-06013944, Build:20.22.3.31

CS2 ENGINEERS

Project File: 2207 Mercer Island Park Residence Remodel.ec6 (c) ENERCALC INC 1983-2022

DESCRIPTION: Typical Wall Footing

One Way Shear

Units : k

Load Combination	Vu @ -X	Vu @ +X	Vu:Max	Phi Vn	Vu / Phi*Vn	Status
					va/im vii	
+1.20D+0.50L	0 p	si Opsi	0 psi	75 psi	0	OK
+1.20D	0 p	si Opsi	0 psi	75 psi	0	OK
+1.20D+0.50L+1.60S	0 p	si Opsi	0 psi	75 psi	0	OK
+1.20D+1.60S	0 p	si Opsi	0 psi	75 psi	0	OK
+1.20D+0.50L+0.50S	0 p	si Opsi	0 psi	75 psi	0	OK
+1.20D+0.50L+0.70S	0 p	si Opsi	0 psi	75 psi	0	OK
+0.90D	0 p	si Opsi	0 psi	75 psi	0	OK

P.O. Box 13423 CS2 ENGINEERS Mill Creek, WA 98082 TEL. 425.408.2748 challenge & Success - Civil & Structural info@cs2engineers.com Project Title: Engineer: Project ID: Project Descr:

General Footing				Pro	ject File: 220	07 Mercer Island		ence Remodel.ec6
LIC# : KW-06013944, Build:20.2 DESCRIPTION: Dec		3.5)	CS2	ENGINEERS			(c) ENE	RCALC INC 1983-202
ode References								
Calculations per ACI 318 Load Combinations Used		8, CBC 2019	ASCE 7-16					
Beneral Information								
Material Properties fc : Concrete 28 day strift fy : Rebar Yield Ec : Concrete Elastic M Concrete Density φ Values Flexure Shear Analysis Settings Min Steel % Bending Rein Min Allow % Temp Rein	odulus einf.	= = 3,1 = 1 =	2.50 ksi 60.0 ksi 22.0 ksi 45.0 pcf 0.90 .750 0.00180	Soil Dens Increase I Soil Passi Soil/Conc Increases b Footing ba Allow pres when f	Soil Bearing ity Bearing By F ive Resistand rete Friction ased on foc ase depth be	ooting Weight ce (for Sliding) Coeff. hting Depth dow soil surface per foot of depth	= = = = =	1.50 ksf 110.0 pcf No 250.0 pcf 0.30 0.750 ft 0.250 ksf ft
Min. Overturning Safety Min. Sliding Safety Fact		=	1.0: 1.0:		ased on foc	ting plan dimen	sion	
Add Ftg Wt for Soil Prea Use ftg wt for stability, r Add Pedestal Wt for So	ssure noments & she il Pressure	:	Yes Yes No	Allowable	pressure inc	rease per foot of ridth is greater the	depth =	ksf ft
Use Pedestal wt for stal Dimensions	unity, mom & S		No					
Width parallel to X-X Axis Length parallel to Z-Z Axis Footing Thickness Pedestal dimensions	=	3.50 3.50 10.0	ft in	X		Z	X	
px : parallel to X-X Axis pz : parallel to Z-Z Axis Height Rebar Centerline to Edge of at Bottom of footing	= = of Concrete =		in in in	0 Ю		Z 3'-6"	Edge Dist. = 3"	
Bars parallel to X-X Axis Number of Bars Reinforcing Bar Size	= =	4.0 # 4						
Bars parallel to Z-Z Axis Number of Bars Reinforcing Bar Size Bandwidth Distribution C Direction Requiring Close		4.0 # 4 5.4.4.2) n/a	به الم	4 - # 4 Bar -X Section Lookin		რ Z-	4 - # 4 Z Section Lo	
# Bars required within zor # Bars required on each s Applied Loads		n/a n/a						
Telenen Tonno		D	Lr	L	S	w	E	Н
P : Column Load OB : Overburden	=	2.468		13.402				k ksf
M-xx M-zz	=							k-ft k-ft
V-x	=							k
V-z	=							k

Challenge & Success - Civil & Structural Challenge & Success - Civil & Structural

Project Title: Engineer: Project ID: Project Descr:

General Footing

LIC# : KW-06013944, Build:20.22.3.31

DESCRIPTION: Deck footing (F3.5)

DESIGN SUMMARY Design OK **Governing Load Combination** Min. Ratio ltem Applied Capacity PASS 0.8391 Soil Bearing 1.688 ksf 1.416 ksf +D+L about Z-Z axis PASS n/a Overturning - X-X 0.0 k-ft 0.0 k-ft No Overturning PASS n/a Overturning - Z-Z 0.0 k-ft 0.0 k-ft No Overturning PASS n/a Sliding - X-X 0.0 k 0.0 k No Sliding PASS n/a Sliding - Z-Z 0.0 k 0.0 k No Sliding PASS n/a Uplift 0.0 k 0.0 k No Uplift PASS 0.4406 Z Flexure (+X) 3.051 k-ft/ft 6.923 k-ft/ft +1.20D+1.60L PASS 0.4406 Z Flexure (-X) 3.051 k-ft/ft 6.923 k-ft/ft +1.20D+1.60L PASS 0.4406 X Flexure (+Z) 3.051 k-ft/ft 6.923 k-ft/ft +1.20D+1.60L

CS2 ENGINEERS

Soil Bearing						
Detailed Re	sults					
PASS	0.8088	2-way Punching	121.327 psi	150.0 psi	+1.20D+1.60L	
PASS	0.3652	1-way Shear (-Z)	27.393 psi	75.0 psi	+1.20D+1.60L	
PASS	0.3652	1-way Shear (+Z)	27.393 psi	75.0 psi	+1.20D+1.60L	
PASS	0.3652	1-way Shear (-X)	27.393 psi	75.0 psi	+1.20D+1.60L	
PASS	0.3652	1-way Shear (+X)	27.393 psi	75.0 psi	+1.20D+1.60L	
PASS	0.4406	X Flexure (-Z)	3.051 k-ft/ft	6.923 k-ft/ft	+1.20D+1.60L	
I AOO	0.4400	$X \cap CX \cap C (TZ)$	0.001 K 101	0.525 K 1011	11.20D11.00L	

Rotation Axis &		Xecc	Zecc	Actual	Soil Bearing S	Stress @ Loc	ation	Actual / Allow
Load Combination	Gross Allowable	(in	ı)	Bottom, -Z	Top, +Z	Left, -X	Right, +X	Ratio
X-X, D Only	1.688	n/a	0.0	0.3223	0.3223	n/a	n/a	0.191
X-X, +D+L	1.688	n/a	0.0	1.416	1.416	n/a	n/a	0.839
X-X, +D+0.750L	1.688	n/a	0.0	1.143	1.143	n/a	n/a	0.677
X-X, +0.60D	1.688	n/a	0.0	0.1934	0.1934	n/a	n/a	0.115
Z-Z, D Only	1.688	0.0	n/a	n/a	n/a	0.3223	0.3223	0.191
Z-Z, +D+L	1.688	0.0	n/a	n/a	n/a	1.416	1.416	0.839
Z-Z, +D+0.750L	1.688	0.0	n/a	n/a	n/a	1.143	1.143	0.677
Z-Z, +0.60D	1.688	0.0	n/a	n/a	n/a	0.1934	0.1934	0.115

Overturning Stability

Rotation Axis & Load Combination		Overt	urning Mome	ent	Resisting M	oment	Stability Ratio	Status
Footing Has NO Overturning								
Sliding Stability								All units k
Force Application Axis Load Combination		S	liding Force		Resisting F	orce	Stability Ratio	Status
Footing Has NO Sliding								
Footing Flexure								
Flexure Axis & Load Combination	Mu k-ft	Side	Tension Surface	As Req'd in^2	Gvrn. As in^2	Actual in^2	As Phi*Mu k-ft	n Status

	k-ft		Surface	in^2	in^2	in^2	k-ft	
X-X, +1.40D	0.4319	+Z	Bottom	0.2160	AsMin	0.2286	6.923	ОК
X-X, +1.40D	0.4319	-Z	Bottom	0.2160	AsMin	0.2286	6.923	OK
X-X, +1.20D+1.60L	3.051	+Z	Bottom	0.2160	AsMin	0.2286	6.923	OK
X-X, +1.20D+1.60L	3.051	-Z	Bottom	0.2160	AsMin	0.2286	6.923	OK
X-X, +1.20D+0.50L	1.208	+Z	Bottom	0.2160	AsMin	0.2286	6.923	OK
X-X, +1.20D+0.50L	1.208	-Z	Bottom	0.2160	AsMin	0.2286	6.923	OK
X-X, +1.20D	0.3702	+Z	Bottom	0.2160	AsMin	0.2286	6.923	OK
X-X, +1.20D	0.3702	-Z	Bottom	0.2160	AsMin	0.2286	6.923	OK
X-X, +0.90D	0.2777	+Z	Bottom	0.2160	AsMin	0.2286	6.923	OK
X-X, +0.90D	0.2777	-Z	Bottom	0.2160	AsMin	0.2286	6.923	OK
Z-Z, +1.40D	0.4319	-X	Bottom	0.2160	AsMin	0.2286	6.923	OK
Z-Z, +1.40D	0.4319	+X	Bottom	0.2160	AsMin	0.2286	6.923	OK
Z-Z, +1.20D+1.60L	3.051	-X	Bottom	0.2160	AsMin	0.2286	6.923	OK
Z-Z, +1.20D+1.60L	3.051	+X	Bottom	0.2160	AsMin	0.2286	6.923	OK
Z-Z, +1.20D+0.50L	1.208	-X	Bottom	0.2160	AsMin	0.2286	6.923	OK
Z-Z, +1.20D+0.50L	1.208	+X	Bottom	0.2160	AsMin	0.2286	6.923	OK
Z-Z, +1.20D	0.3702	-X	Bottom	0.2160	AsMin	0.2286	6.923	ОК

Project File: 2207 Mercer Island Park Residence Remodel.ec6

(c) ENERCALC INC 1983-2022

P.O. Box 13423 TEL. 425.408.2748 Project Title: Engineer: Project ID: Project Descr:

General Footing

LIC# : KW-06013944, Build:20.22.3.31

CS2 ENGINEERS

(c) ENERCALC INC 1983-2022

Project File: 2207 Mercer Island Park Residence Remodel.ec6

DESCRIPTION: Deck footing (F3.5)

Footing Flexure

Flexure Axis & Load Combinatio	n Mu k-ft	Side	Tensio Surfac		I Gvrn. A in^2	As Actual in^2		Phi*Mn k-ft	Status
Z-Z, +1.20D	0.3702	+X	Bottom	0.2160	AsMin	0.228	6	6.923	ок
Z-Z, +0.90D	0.2777	-X	Bottom	0.2160	AsMin	0.228	6	6.923	OK
Z-Z, +0.90D	0.2777	+X	Bottom	0.2160	AsMin	0.228	86	6.923	OK
One Way Shear									
Load Combination	Vu @ -X	Vu @	+X V	u@-Z V	u @ +Z	Vu:Max	Phi Vn	Vu / Phi*Vn	Status
+1.40D	3.88 p	osi	3.88 psi	3.88 psi	3.88 ps	i 3.88 psi	75.00) psi 0.05	OK
+1.20D+1.60L	27.39	osi	27.39 psi	27.39 psi	27.39 ps	i 27.39 psi	75.00) psi 0.37	OK
+1.20D+0.50L	10.85	osi	10.85 psi	10.85 psi	10.85 ps	i 10.85 psi	75.00) psi 0.14	OK
+1.20D	3.32	osi	3.32 psi	3.32 psi	3.32 ps	i 3.32 psi	75.00) psi 0.04	OK
+0.90D	2.49	osi	2.49 psi	2.49 psi	2.49 ps	i 2.49 psi	75.00) psi 0.03	OK
Two-Way "Punching" Shear								All unit	s k
Load Combination		Vu		Phi*Vn		Vu / Phi*Vr	1		Status
+1.40D		17.1	8 psi	150.0	Opsi	0.1145			OK
+1.20D+1.60L		121.3	33 psi	150.0	Dpsi	0.8088			ок
+1.20D+0.50L		48.0	04 psi	150.0	Opsi	0.3202			OK
+1.20D		14.7	2 psi	150.0	Opsi	0.09816			ΟΚ
+0.90D		11.0	04 psi	150.0	Opsi	0.07362			OK

P.O. Box 13423 CS2 ENGINEERS Mill Creek, WA 98082 TEL. 425.408.2748 challenge & Success - Civil & Structural info@cs2engineers.com Project Title: Engineer: Project ID: Project Descr:

General Footing				Project F	ile: 2207 Mercer Islar	nd Park Resid	ence Remodel.ec6
LIC# : KW-06013944, Build:20.22.			CS2 E	NGINEERS		(c) ENE	RCALC INC 1983-202
DESCRIPTION: Deck	footing (F2.0)						
ode References							
Calculations per ACI 318-		BC 2019, A	SCE 7-16				
Load Combinations Used	: IBC 2018						
eneral Information							
Material Properties f'c : Concrete 28 day stre	nath -	24	50 ksi	Soil Design Valu Allowable Soil B		_	1.50 ksf
fy : Rebar Yield	ngth =		.0 ksi	Soil Density	bearing	=	110.0 pcf
Éc : Concrete Elastic Mo		3,122		Increase Bearir	ng By Footing Weight	=	No
Concrete Density	=		.0 pcf		esistance (for Sliding)	=	250.0 pcf
_φ Values Flexure Shear	=	0.9 0.75		Soil/Concrete F		=	0.30
Analysis Settings	-	0.73			on footing Depth epth below soil surfac	e =	0.750 ft
Min Steel % Bending Rei		=			crease per foot of dep		0.250 ksf
Min Allow % Temp Reinf.		=	0.00180	when footing	g base is below	=	ft
Min. Overturning Safety F Min. Sliding Safety Facto		=	1.0: [·] 1.0: [·]		on footing plan dim	onsion	
Add Ftg Wt for Soil Press		:	Yes		sure increase per foot		
Use ftg wt for stability, me		:	Yes			. =	ksf
Add Pedestal Wt for Soil		:	No	when max. leng	oth or width is greater	than =	ft
Use Pedestal wt for stabi	lity, mom & shear	:	No			-	п
imensions							
Width parallel to X-X Axis	=	2.0 ft					
Length parallel to Z-Z Axis	=	2.0 ft			Z		
Footing Thickness	=	8.0 in					
Pedestal dimensions px : parallel to X-X Axis pz : parallel to Z-Z Axis Height Rebar Centerline to Edge of at Bottom of footing	= = = Concrete =	in in in 3.0 in		X 		Edge Dist. = 3"	
einforcing					2'-0"	ĔĞ	
Bars parallel to X-X Axis		_			I		
Number of Bars	=	2 # 4					
Reinforcing Bar Size	=	# 4					
Bars parallel to Z-Z Axis Number of Bars	=	2		2 - # 4 Bars		2 - # 4	Bars
Reinforcing Bar Size	=	# 4					
Bandwidth Distribution Ch		2) (n				
Direction Requiring Closer	Separation		X-X Se	ction Looking	to +Z Z-Z S	ection Lo	oking to +X
		n/a		_			-
# Bars required within zone# Bars required on each side		n/a n/a					
•		II/a					
pplied Loads			1.		w	F	
D · Column Lood	D		Lr	L S	, vv	E	H
P : Column Load OB : Overburden	= 0.9	9220		5.272			k ksf
M-xx							k-ft
M-zz	=						k-ft
	=						k
V-x							

P.O. Box 13423 CS2 ENGINEERS Mill Creek, WA 98082 TEL. 425.408.2748 challenge & Success - Civil & Structural info@cs2engineers.com Project Title: Engineer: Project ID: Project Descr:

Project File: 2207 Mercer Island Park Residence Remodel.ec6

(c) ENERCALC INC 1983-2022

General Footing

LIC# : KW-06013944, Build:20.22.3.31

DESCRIPTION: Deck footing (F2.0)

IGN SU	JMMARY				Design OK
	Min. Ratio	Item	Applied	Capacity	Governing Load Combination
PASS	0.9801	Soil Bearing	1.654 ksf	1.688 ksf	+D+L about Z-Z axis
PASS	n/a	Overturning - X-X	0.0 k-ft	0.0 k-ft	No Overturning
PASS	n/a	Overturning - Z-Z	0.0 k-ft	0.0 k-ft	No Overturning
PASS	n/a	Sliding - X-X	0.0 k	0.0 k	No Sliding
PASS	n/a	Sliding - Z-Z	0.0 k	0.0 k	No Sliding
PASS	n/a	Uplift	0.0 k	0.0 k	No Uplift
PASS	0.2781	Z Flexure (+X)	1.193 k-ft/ft	4.288 k-ft/ft	+1.20D+1.60L
PASS	0.2781	Z Flexure (-X)	1.193 k-ft/ft	4.288 k-ft/ft	+1.20D+1.60L
PASS	0.2781	X Flexure (+Z)	1.193 k-ft/ft	4.288 k-ft/ft	+1.20D+1.60L
PASS	0.2781	X Flexure (-Z)	1.193 k-ft/ft	4.288 k-ft/ft	+1.20D+1.60L
PASS	0.3075	1-way Shear (+X)	23.059 psi	75.0 psi	+1.20D+1.60L
PASS	0.3075	1-way Shear (-X)	23.059 psi	75.0 psi	+1.20D+1.60L
PASS	0.3075	1-way Shear (+Z)	23.059 psi	75.0 psi	+1.20D+1.60L
PASS	0.3075	1-way Shear (-Z)	23.059 psi	75.0 psi	+1.20D+1.60L
PASS	0.6107	2-way Punching	91.599 psi	150.0 psi	+1.20D+1.60L

CS2 ENGINEERS

Detailed Results

Rotation Axis &		Xecc	Zecc	Actual	Soil Bearing S	Stress @ Loc	ation	Actual / Allow
Load Combination	Gross Allowable	(in)	Bottom, -Z	Top, +Z	Left, -X	Right, +X	Ratio
X-X, D Only	1.688	n/a	0.0	0.3363	0.3363	n/a	n/a	0.199
X-X, +D+L	1.688	n/a	0.0	1.654	1.654	n/a	n/a	0.980
X-X, +D+0.750L	1.688	n/a	0.0	1.325	1.325	n/a	n/a	0.785
X-X, +0.60D	1.688	n/a	0.0	0.2018	0.2018	n/a	n/a	0.120
Z-Z, D Only	1.688	0.0	n/a	n/a	n/a	0.3363	0.3363	0.199
Z-Z, +D+L	1.688	0.0	n/a	n/a	n/a	1.654	1.654	0.980
Z-Z, +D+0.750L	1.688	0.0	n/a	n/a	n/a	1.325	1.325	0.785
Z-Z, +0.60D	1.688	0.0	n/a	n/a	n/a	0.2018	0.2018	0.120

Overturning Stability

Rotation Axis & Load Combination		Overt	urning Mome	ent	Resisting Mo	oment	Stability Ratio	Status
Footing Has NO Overturning								
Sliding Stability								All units k
Force Application Axis Load Combination		S	liding Force		Resisting F	orce	Stability Ratio	Status
Footing Has NO Sliding Footing Flexure								
Flexure Axis & Load Combination	Mu k-ft	Side	Tension Surface	As Req'd in^2	Gvrn. As in^2	Actual A in^2	As Phi*Mı k-ft	n Statu

	K-ft		Surface	in^2	in^2	in^2	k-ft	
X-X, +1.40D	0.1614	+Z	Bottom	0.1728	AsMin	0.20	4.288	ок
X-X, +1.40D	0.1614	-Z	Bottom	0.1728	AsMin	0.20	4.288	ОК
X-X, +1.20D+1.60L	1.193	+Z	Bottom	0.1728	AsMin	0.20	4.288	ОК
X-X, +1.20D+1.60L	1.193	-Z	Bottom	0.1728	AsMin	0.20	4.288	OK
X-X, +1.20D+0.50L	0.4678	+Z	Bottom	0.1728	AsMin	0.20	4.288	ОК
X-X, +1.20D+0.50L	0.4678	-Z	Bottom	0.1728	AsMin	0.20	4.288	ОК
X-X, +1.20D	0.1383	+Z	Bottom	0.1728	AsMin	0.20	4.288	ОК
X-X, +1.20D	0.1383	-Z	Bottom	0.1728	AsMin	0.20	4.288	ОК
X-X, +0.90D	0.1037	+Z	Bottom	0.1728	AsMin	0.20	4.288	ОК
X-X, +0.90D	0.1037	-Z	Bottom	0.1728	AsMin	0.20	4.288	ОК
Z-Z, +1.40D	0.1614	-X	Bottom	0.1728	AsMin	0.20	4.288	ОК
Z-Z, +1.40D	0.1614	+X	Bottom	0.1728	AsMin	0.20	4.288	OK
Z-Z, +1.20D+1.60L	1.193	-X	Bottom	0.1728	AsMin	0.20	4.288	ОК
Z-Z, +1.20D+1.60L	1.193	+X	Bottom	0.1728	AsMin	0.20	4.288	ОК
Z-Z, +1.20D+0.50L	0.4678	-X	Bottom	0.1728	AsMin	0.20	4.288	ОК
Z-Z, +1.20D+0.50L	0.4678	+X	Bottom	0.1728	AsMin	0.20	4.288	ОК
Z-Z, +1.20D	0.1383	-X	Bottom	0.1728	AsMin	0.20	4.288	ОК

P.O. Box 13423 TEL. 425.408.2748 Project Title: Engineer: Project ID: Project Descr:

General Footing

LIC# : KW-06013944, Build:20.22.3.31

CS2 ENGINEERS

(c) ENERCALC INC 1983-2022

Project File: 2207 Mercer Island Park Residence Remodel.ec6

DESCRIPTION: Deck footing (F2.0)

Footing Flexure

Flexure Axis & Load Combination	n Mu k-ft	Side	Tension Surface		Gvrn. A in^2	As Actual in^2		Phi' k-	* Mn -ft	Status
Z-Z, +1.20D	0.1383	+X	Bottom	0.1728	AsMin	0.2	0		4.288	ок
Z-Z, +0.90D	0.1037	-X	Bottom	0.1728	AsMin	0.2	0		4.288	OK
Z-Z, +0.90D	0.1037	+X	Bottom	0.1728	AsMin	0.2	0		4.288	OK
One Way Shear										
Load Combination	Vu @ -X	Vu @	+X Vu	@-Z Vu	ı @ +Z	Vu:Max	Phi Vn	v	u / Phi*Vn	Status
+1.40D	3.12 p	si	3.12 psi	3.12 psi	3.12 ps	i 3.12 psi	75.	.00 psi	0.04	OK
+1.20D+1.60L	23.06 p	si	23.06 psi	23.06 psi	23.06 ps	i 23.06 psi	75.	.00 psi	0.31	OK
+1.20D+0.50L	9.04 p	si	9.04 psi	9.04 psi	9.04 ps	i 9.04 psi	75.	.00 psi	0.12	OK
+1.20D	2.67 p	si	2.67 psi	2.67 psi	2.67 ps	i 2.67 psi	75.	.00 psi	0.04	OK
+0.90D	2.01 p	si	2.01 psi	2.01 psi	2.01 ps	i 2.01 psi	75.	.00 psi	0.03	OK
Two-Way "Punching" Shear									All units	k
Load Combination		Vu		Phi*Vn		Vu / Phi*Vn	1			Status
+1.40D		12.3	39 psi	150.00	psi	0.08261				ОК
+1.20D+1.60L		91.6	50 psi	150.00	Ipsi	0.6107				OK
+1.20D+0.50L		35.9	93 psi	150.00	psi	0.2395				OK
+1.20D		10.6	62 psi	150.00	psi	0.07081				OK
+0.90D		7.9	97 psi	150.00	psi	0.05311				OK

CS2 ENGINEERS Challenge & Success - Civil & Structural Project Title: Engineer: Project ID: Project Descr:

ICH KW/ICHANGAN DIMANNY	22 3 31		000	ENGINEERS			RCALC INC 1983-202
IC# : KW-06013944, Build:20.2 DESCRIPTION: Inte		opting (E2 5		ENGINEERS		(C) EINE	RCALC INC 1983-202
DESCRIPTION. IIILE		Joung (F2.5)				
ode References							
Calculations per ACI 318	3-14, IBC 201	8, CBC 201	9, ASCE 7-16				
oad Combinations Use	d : IBC 2018						
eneral Information							
Motorial Dreportion				Sail Daoign Va	luce		
Material Properties f'c : Concrete 28 day st	renath	=	2.50 ksi	Soil Design Va Allowable So		=	1.50 ksf
fy : Rebar Yield	0	=	60.0 ksi	Soil Density	Ū	=	110.0 pcf
Ec : Concrete Elastic N	lodulus	- ,	122.0 ksi		aring By Footing We		No
Concrete Density			145.0 pcf 0.90		Resistance (for Slid		250.0 pcf
_φ Values Flexure Shear		=	0.90		e Friction Coeff.	=	0.30
Analysis Settings		-	0.750	Increases base	ed on footing Dept depth below soil su	n rface =	0.750 ft
Min Steel % Bending R	einf.	=			increase per foot of		0.250 ksf
Min Allow % Temp Rei		=	0.00180		ing base is below	=	ft
Min. Overturning Safety		=	1.0 :				
Min. Sliding Safety Fac		=	1.0 :		ed on footing plan essure increase per		
Add Ftg Wt for Soil Pre Use ftg wt for stability, i			Yes Yes	Allowable pre	soure increase per	=	ksf
Add Pedestal Wt for Stability, I		-dio :	No	when max. le	ength or width is grea		
Use Pedestal wt for sta		· ·	No			=	ft
	ionity, morn & a		NO				
imensions							
Width parallel to X-X Axis	=	2.50			_		
Length parallel to Z-Z Axis	6 =	2.50			Z		
Footing Thickness	=	8.0) in				
Pedestal dimensions px : parallel to X-X Axis pz : parallel to Z-Z Axis Height Rebar Centerline to Edge at Bottom of footing	=	3.0	in in in D in	5-0-X	Z 2'-6"	Edge Dist. = 3"	
Bars parallel to X-X Axis	=						
Number of Bars Reinforcing Bar Size	_	4.0) 4				
Bars parallel to Z-Z Axis	-	π 4	T				
Number of Bars	=	4.0	5	1 #1 Por		A 4	4 Bars
Reinforcing Bar Size	=		4	4 - # 4 Bars		4 - #	
Bandwidth Distribution (Check (ACI 1	5.4.4.2)	ື້ຕ				
Direction Requiring Close	er Separation		X-X	Section Lookin	g to +Z	Z-Z Section L	ooking to +X
# Bars required within zo # Bars required on each s pplied Loads							
phien roans		D	Lr	L	S W	E	н
D · Column Lood		1.966	Lľ		S W	E	
P : Column Load OB : Overburden	=	1.900		6.158			k ksf
Mvv							k-ft
M-xx M-zz							k-ft
M-xx M-zz V-x	=						k-ft k

CS2 ENGINEERS Challenge & Success - Civil & Structural Challenge & Success - Civil & Structural Project Title: Engineer: Project ID: Project Descr:

General Footing

CS2

LIC# : KW-06013944, Build:20.22.3.31

Project File: 2207 Mercer Island Park Residence Remodel.ec6

(c) ENERCALC INC 1983-2022

DESCRIPTION: Interior Beam footing (F2.5)

IGN SUMMARY				Design N.G.
Min. Ratio	Item	Applied	Capacity	Governing Load Combination
PASS	Soil Bearing	ksf	ksf	
FAIL	Overturning - X-X	k-ft	k-ft	
FAIL	Overturning - Z-Z	k-ft	k-ft	
FAIL	Sliding - X-X	k	k	
FAIL	Sliding - Z-Z	k	k	
FAIL	Uplift	k	k	
PASS	Z Flexure (+X)	k-ft/ft	k-ft/ft	
PASS	Z Flexure (-X)	k-ft/ft	k-ft/ft	
PASS	X Flexure (+Z)	k-ft/ft	k-ft/ft	
PASS	X Flexure (-Z)	k-ft/ft	k-ft/ft	
PASS	1-way Shear (+X)	psi	psi	
PASS	1-way Shear (-X)	psi	psi	
PASS	1-way Shear (+Z)	psi	psi	
PASS	1-way Shear (-Z)	psi	psi	
PASS	2-way Punching	psi	psi	

CS2 ENGINEERS

Detailed Results

Rotation Axis &		Xecc	Zecc	Actual	Soil Bearing S	Stress @ Loc	ation	Actual / Allow
Load Combination	Gross Allowable	(in)	Bottom, -Z	Top, +Z	Left, -X	Right, +X	Ratio
X-X, D Only	1.688	n/a	0.0	0.4204	0.4204	n/a	n/a	0.249
X-X, +D+L	1.688	n/a	0.0	1.406	1.406	n/a	n/a	0.833
X-X, +D+0.750L	1.688	n/a	0.0	1.159	1.159	n/a	n/a	0.687
X-X, +0.60D	1.688	n/a	0.0	0.2522	0.2522	n/a	n/a	0.150
Z-Z, D Only	1.688	0.0	n/a	n/a	n/a	0.4204	0.4204	0.249
Z-Z, +D+L	1.688	0.0	n/a	n/a	n/a	1.406	1.406	0.833
Z-Z, +D+0.750L	1.688	0.0	n/a	n/a	n/a	1.159	1.159	0.687
Z-Z, +0.60D	1.688	0.0	n/a	n/a	n/a	0.2522	0.2522	0.150

Overturning Stability

Rotation Axis & Load Combination		Overturning Moment		Resisting Moment		Stability Ratio		Status	
Footing Has NO Overturning	ning								
Sliding Stability									All units k
Force Application Axis Load Combination			Resisting Force		Stability Ratio		Status		
Footing Has NO Sliding									
Footing Flexure									
Flexure Axis & Load Combination	Mu	Side	Tension	As Req'd	Gvrn. As	Actual		hi*Mn	Statu

Flexure Axis & Load Combination	k-ft	Side	Surface	in^2	in^2	in^2	k-ft	Status
X-X, +1.40D	0.3441	+Z	Bottom	0.1728	AsMin	0.320	6.658	ок
X-X, +1.40D	0.3441	-Z	Bottom	0.1728	AsMin	0.320	6.658	OK
X-X, +1.20D+1.60L	1.527	+Z	Bottom	0.1728	AsMin	0.320	6.658	OK
X-X, +1.20D+1.60L	1.527	-Z	Bottom	0.1728	AsMin	0.320	6.658	OK
X-X, +1.20D+0.50L	0.6798	+Z	Bottom	0.1728	AsMin	0.320	6.658	OK
X-X, +1.20D+0.50L	0.6798	-Z	Bottom	0.1728	AsMin	0.320	6.658	OK
X-X, +1.20D	0.2949	+Z	Bottom	0.1728	AsMin	0.320	6.658	OK
X-X, +1.20D	0.2949	-Z	Bottom	0.1728	AsMin	0.320	6.658	OK
X-X, +0.90D	0.2212	+Z	Bottom	0.1728	AsMin	0.320	6.658	OK
X-X, +0.90D	0.2212	-Z	Bottom	0.1728	AsMin	0.320	6.658	OK
Z-Z, +1.40D	0.3441	-X	Bottom	0.1728	AsMin	0.320	6.658	OK
Z-Z, +1.40D	0.3441	+X	Bottom	0.1728	AsMin	0.320	6.658	OK
Z-Z, +1.20D+1.60L	1.527	-X	Bottom	0.1728	AsMin	0.320	6.658	OK
Z-Z, +1.20D+1.60L	1.527	+X	Bottom	0.1728	AsMin	0.320	6.658	OK
Z-Z, +1.20D+0.50L	0.6798	-X	Bottom	0.1728	AsMin	0.320	6.658	OK
Z-Z, +1.20D+0.50L	0.6798	+X	Bottom	0.1728	AsMin	0.320	6.658	OK
Z-Z, +1.20D	0.2949	-X	Bottom	0.1728	AsMin	0.320	6.658	OK

P.O. Box 13423 CS2 ENGINEERS Mill Creek, WA 98082 TEL. 425.408.2748 Challenge & Success - Civil & Structural info@cs2engineers.com Project Title: Engineer: Project ID: Project Descr:

General Footing

LIC# : KW-06013944, Build:20.22.3.31

Project File: 2207 Mercer Island Park Residence Remodel.ec6 CS2 ENGINEERS

(c) ENERCALC INC 1983-2022

DESCRIPTION: Interior Beam footing (F2.5)

Footing Flexure

Flexure Axis & Load Combination	n <mark>Mu</mark> k-ft	Side	Tension Surface		I Gvrn. A in^2	As Actual in^2		Phi*N k-ft		Status
Z-Z, +1.20D	0.2949	+X	Bottom	0.1728	AsMin	0.32	0	6.	658	ок
Z-Z, +0.90D	0.2212	-X	Bottom	0.1728	AsMin	0.32	20	6.	658	OK
Z-Z, +0.90D	0.2212	+X	Bottom	0.1728	AsMin	0.32	20	6.	658	OK
One Way Shear										
Load Combination	Vu @ -X	Vu @	+X Vu	ı@-Z Vı	u @ +Z	Vu:Max	Phi Vn	Vu	/ Phi*Vn	Status
+1.40D	6.06 p	si	6.06 psi	6.06 psi	6.06 psi	6.06 psi	75.0)0 psi	0.08	OK
+1.20D+1.60L	26.87 p	si	26.87 psi	26.87 psi	26.87 psi	26.87 psi	75.0	00 psi	0.36	OK
+1.20D+0.50L	11.96 p	si	11.96 psi	11.96 psi	11.96 psi	11.96 psi	75.0	00 psi	0.16	OK
+1.20D	5.19 p	si	5.19 psi	5.19 psi	5.19 psi	5.19 psi	75.0	00 psi	0.07	OK
+0.90D	3.89 p	si	3.89 psi	3.89 psi	3.89 psi	3.89 psi	75.0	00 psi	0.05	OK
Two-Way "Punching" Shear									All units	k
Load Combination		Vu		Phi*Vn		Vu / Phi*Vn	1			Status
+1.40D		26.	32 psi	150.00	Opsi	0.1788				ОК
+1.20D+1.60L		118.9	99 psi	150.00	Dpsi	0.7933				OK
+1.20D+0.50L		52.9	99 psi	150.00	Dpsi	0.3533				OK
+1.20D		22.9	99 psi	150.00	Opsi	0.1533				OK
+0.90D		17.3	24 psi	150.00	Opsi	0.1149				OK

Project Title: Engineer: Project ID: Project Descr:

Restrained Retaining Wall

LIC# : KW-06013944, Build:20.22.3.31

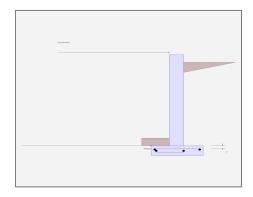
Project File: 2207 Mercer Island Park Residence Remodel.ec6

(c) ENERCALC INC 1983-2022

DESCRIPTION: Restrained Stem Wall

Code Reference

Calculations per IBC 2018 1807.3, CBC 2019, ASCE 7-16


Criteria

Soil Data

Retained Height Wall height above soil Total Wall Height	= = _ =	5.50 ft 0.50 ft 6.0 ft
Top Support Height	=	6.0 ft
Slope Behind Wall Height of Soil over Toe	=	0 6 in

Allow Soil Bearing Equivalent Fluid Pressure	= Metho	1,500.0 psf d
At-Rest Heel Pressure	=	32.0 psf/ft
	=	0.0 psf/ft
Passive Pressure	=	250.0 psf/ft
Soil Density	=	110 pcf
Footing Soil Frictior	=	0.4 psf
Soil height to ignore for passive pressure	=	12 in

CS2 ENGINEERS

Surcharge Loads

Surcharge Over Heel	=	0 psf					
>>>Used To Resist S	iding	& Overturning					
Surcharge Over Toe	=	40.0 psf					
Used for Sliding & Overturning							
Axial Load Applied to Stem							

Axial Load Applied to Stem

Axial Dead Load	=	531.25 lbs
Axial Live Load	=	737.75 lbs
Axial Load Eccentricity	=	0 in

Earth Pressure Seismic Load

Design Summary

Total Bearing Load	=	2,835.90 lbs	
resultant ecc.	=	-1.798 in	
Soil Pressure @ Toe	=	704.96 pst	OK
Soil Pressure @ Heel	=	1,421.70 pst	
Allowable	=	0 pst	
Soil Pressure Less	s Tha	n Allowable	
ACI Factored @ Toe	=	919.31 pst	
ACI Factored @ Heel	=	1,853.98 pst	
Footing Shear @ Toe	=	9.014 psi	OK
Footing Shear @ Heel	=	12.621 psi	
Allowable	=	75.0 psi	
Reaction at Top	=	146.889 lb	•
Reaction at Bottom	=	460.556 lb	
Sliding Calcs Lateral Sliding Force	=	460.556 lbs	

Vertical component of active lateral soil pressure IS NOT considered in the calculation of soil bearing

Load Factors -

Building Code	
Dead Load	0.000
Live Load	0.000
Earth, H	0.000
Wind, W	0.000
Seismic, E	0.000

Uniform Lateral Load Applied to Stem							
Lateral Load	=	0 #/ft					
Height to Top Height to Bottom	=	0 ft 0 ft					
Load Type	=	Wind (W) (Service Level)					
Wind on Exposed Stem	=	0.00 psf (Service Level)					
Wind acts left-to-right toward retention side.							
K _h Soil Density Multipl	ier	= 0.2 g A	d				

Adjacent Footing Load

Adjacent Footing Load	=	0.0 lbs
Footing Width Eccentricity	=	0 ft 0 in
Wall to Ftg CL Dist	=	0 ft
Footing Type		Line Load
Base Above/Below Soil at Back of Wall	=	0 ft
Poisson's Ratio	=	0.3
dded seismic per unit area	=	0.0 psf

Concrete Stem Construction

Thickness = 8.00 in Wall Weight = 100.0 psf Stem is FREE to rotate at top of footing

	@ Top Support		Mmax Between Top & Base	@ Base of Wall	
		Stem OK	Stem OK	Stem OK	
Design Height Above Ftg	=	6.0 ft	2.482 ft	0.00 ft	
Rebar Size	=	# 4	# 4	# 4	
Rebar Spacing	=	12.00 in	12.00 in	12.00 in	
Rebar Placed at	=	Center	Center	Center	
Rebar Depth 'd'	=	4.0 in	4.0 in	4.0 in	
Design Data					
fb/FB + fa/Fa	=	0	0	0	
MomentActual	=	0.0 ft-#	597.91 ft-#	0.0 ft-#	
MomentAllowable	=	3,387.60 ft-#	3,387.60 ft-#	3,387.60 ft-#	
Shear Force @ this height	=	236.622 lbs		537.78 lbs	
ShearActual	=	4.930 psi		11.204 psi	
ShearAllowable	=	75.0 psi		75.0 psi	

Toe Width

Heel Width

Key Width

Key Depth

Min. As %

Cover @ Top =

f'c =

Total Footing Width

Footing Thickness

Key Distance from Toe

2,500.0 psi

Footing Concrete Density =

Challenge & Success - Civil & Structural Challenge & Success - Civil & Structural

1.0 ft

8.0 in

0 in

0 in

0 ft

150 pcf

60000 psi

0.0018

1.667

2.667

Project Title: Engineer: Project ID: Project Descr:

Restrained Retaining Wall

LIC# : KW-06013944, Build:20.22.3.31

Footing Strengths & Dimensions

DESCRIPTION: Restrained Stem Wall

=

=

=

=

=

=

=

Fy =

=

2 in @ Btm.=

Footing Design Results

CS2 ENGINEERS

ft			<u>Toe</u>	Heel	
	Factored Pressure	=	919.31	1,853.98 psf	
_	Mu' : Upward	=	518.06	0 ft-#	
in	Mu' : Downward	=	125.0	0 ft-#	
in	Mu: Design	=	393	-446 ft-#	
in	Actual 1-Way Shear	=	9.014	0 psi	
ft	Allow 1-Way Shear	=	75.0	75.0 psi	
psi	Other Acceptable Sizes & Spacings:				
pcf	Toe: # 4 @ 13.89 in		-or-	#4@ 13.88 in, #5@ 21.52 in, #6@ 30.55 in, #7@ 41	
0 :	Heel:# 4 @ 13.89 in		-or-	#4@ 13.88 in, #5@ 21.52 in, #6@ 30.55 in, #7@ 41	
3 in	Key: # 0 @ 0.00 in		-or-	No key defined	
	Min footing T&S rein	f Are	а	0.46 in2	
	Min footing T&S reinf	Area	a per foot	0.17 in2 /ft	
	If one layer of horizor	ntal b	ars: If	two layers of horizontal bars:	
	#4@ 13.89 in			#4@ 27.78 in	
	#5@ 21.53 in			#5@ 43.06 in	
	#6@ 30.56 in			#6@ 61.11 in	
		- 4			

Summary of Forces on Footing : Slab RESISTS sliding, stem is PINNED at footing

Forces acting on footing soil pressure

(taking moments about front of footing to find eccentricity)

Surcharge Over Heel	=	0.0lbs	0.0 ft	0.0ft-#
Axial Dead Load on Stem	=	1,269.0lbs	1.333 ft	1,692.0ft-#
Soil Over Toe	=	55.0lbs	0.50 ft	27.50ft-#
Adjacent Footing Load	=	0.0lbs	0.0 ft	0.0ft-#
Surcharge Over Toe	=	40.0lbs	0.50 ft	20.0ft-#
Stem Weight	=	600.0lbs	1.333 ft	800.0ft-#
Soil Over Heel	=	605.20 lbs	2.167 ft	1,311.37ft-#
Footing Weight	=	266.70 lbs	1.334 ft	355.644ft-#
Total Vertical Force	=	2,835.90 lbs	Moment =	4,206.52ft-#

Vertical component of active lateral soil pressure IS NOT considered in the calculation of Sliding Resistance.

Project File: 2207 Mercer Island Park Residence Remodel.ec6

(c) ENERCALC INC 1983-2022

Project Title: Engineer: Project ID: Project Descr:

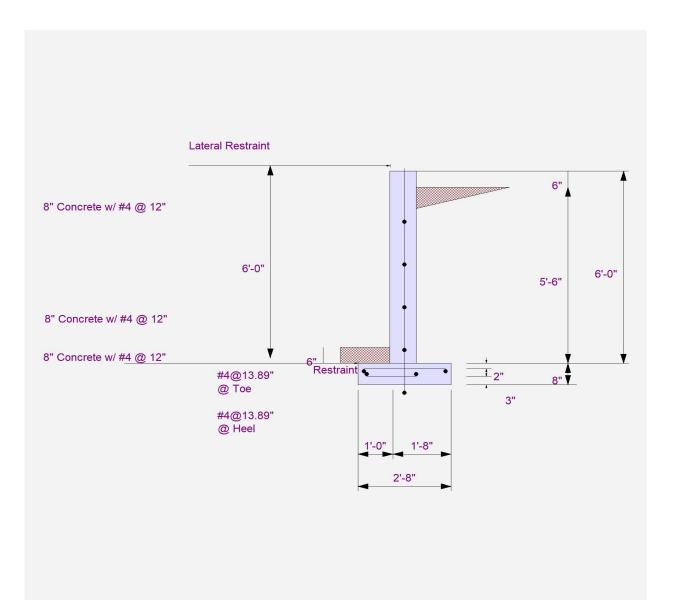
Restrained Retaining Wall Project File: 2207 Mercer Island Park Residence Remodel.ec6

LIC# : KW-06013944, Build:20.22.3.31

CS2 ENGINEERS

(c) ENERCALC INC 1983-2022

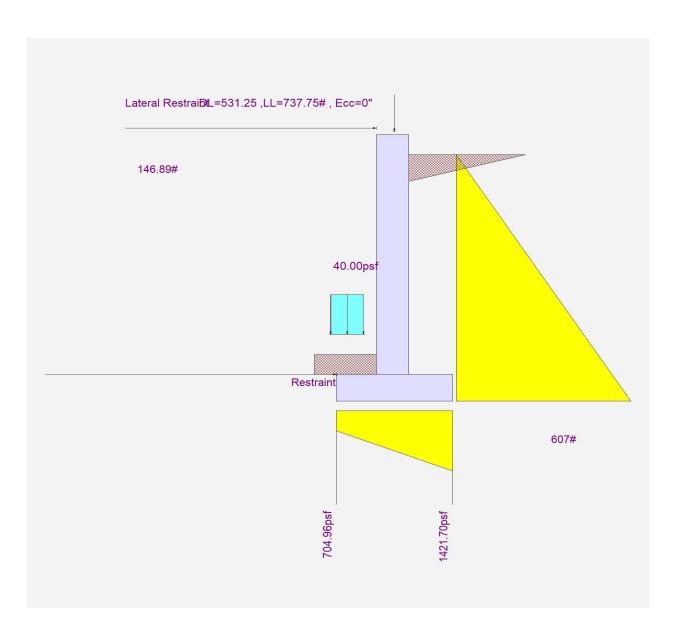
DESCRIPTION: Restrained Stem Wall


Rebar Lap & Embedment Lengths Information

Project Title: Engineer: Project ID: Project Descr:

Restrained Retaining Wall Project File: 2207 Mercer Island Park Residence Remodel.ec6 LIC# : KW-06013944, Build:20.22.3.31 CS2 ENGINEERS (c) ENERCALC INC 1983-2022

DESCRIPTION: Restrained Stem Wall



Project Title: Engineer: Project ID: Project Descr:

 Restrained Retaining Wall
 Project File: 2207 Mercer Island Park Residence Remodel.ec6

 LIC# : KW-06013944, Build:20.22.3.31
 CS2 ENGINEERS
 (c) ENERCALC INC 1983-2022

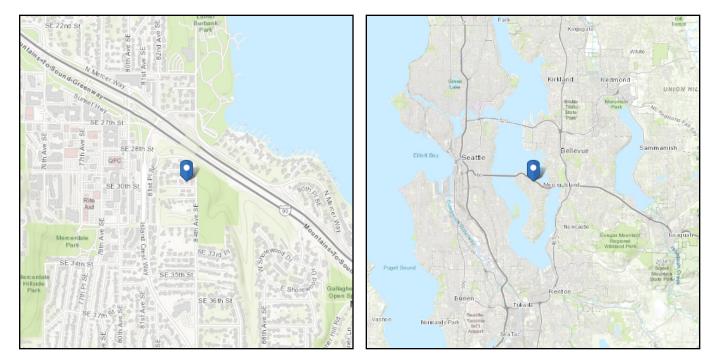
DESCRIPTION: Restrained Stem Wall

Project:	8244 SE 30 th St (#545230-0816)	Date:	March 28, 2022
Location:	Mercer Island, WA	Prepared By:	S. Cho
CS2 No:	2207	Page	

Lateral Load Design Calculation

ASCE 7 Hazards Report

Address: 8244 SE 30th St Mercer Island, Washington 98040


Standard: ASCE/SEI 7-16

Risk Category: II Soil Class: D

D - Default (see Section 11.4.3)
 Elevation:
 200.54 ft (NAVD 88)

 Latitude:
 47.58388

 Longitude:
 -122.227601

Wind

Results:

Wind Speed	98 Vmph
10-year MRI	67 Vmph
25-year MRI	74 Vmph
50-year MRI	78 Vmph
100-year MRI	83 Vmph

Data Source:	ASCE/SEI 7-16, Fig. 26.5-1B and Figs. CC.2-1–CC.2-4, and Section 26.5.2
Date Accessed:	Sat Apr 09 2022

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-16 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).

Site is not in a hurricane-prone region as defined in ASCE/SEI 7-16 Section 26.2.

Site Soil Class: Results:	D - Default (see Sect	ion 11.4.3)	
S _s :	1.395	S _{D1} :	N/A
S ₁ :	0.486	Τ _L :	6
F _a :	1.2	PGA :	0.597
F _v :	N/A	PGA M:	0.716
S _{MS} :	1.674	F _{PGA} :	1.2
S _{M1} :	N/A	l _e :	1
S _{DS} :	1.116	C _v :	1.379
Ground motion hazard analysis r	may be required. See As	SCE/SEI 7-16 Section	11.4.8.
Data Accessed:	Sat Apr 09 2022		
Date Source:	USGS Seismic Desig	<u>n Maps</u>	

Results:

Elevation:

Data Source:

Date Accessed:

Sat Apr 09 2022

In "Case Study" areas, site-specific case studies are required to establish ground snow loads. Extreme local variations in ground snow loads in these areas preclude mapping at this scale.

Ground snow load determination for such sites shall be based on an extreme value statistical analysis of data available in the vicinity of the site using a value with a 2 percent annual probability of being exceeded (50-year mean recurrence interval).

Site is outside ASCE/SEI 7-16, Table 7.2-5 boundaries. For ground snow loads in this area, see SEAW Snow Load Analysis for Washington, 2nd Ed. (1995). <u>Structural Engineers Association of Washington</u>, Seattle, WA.

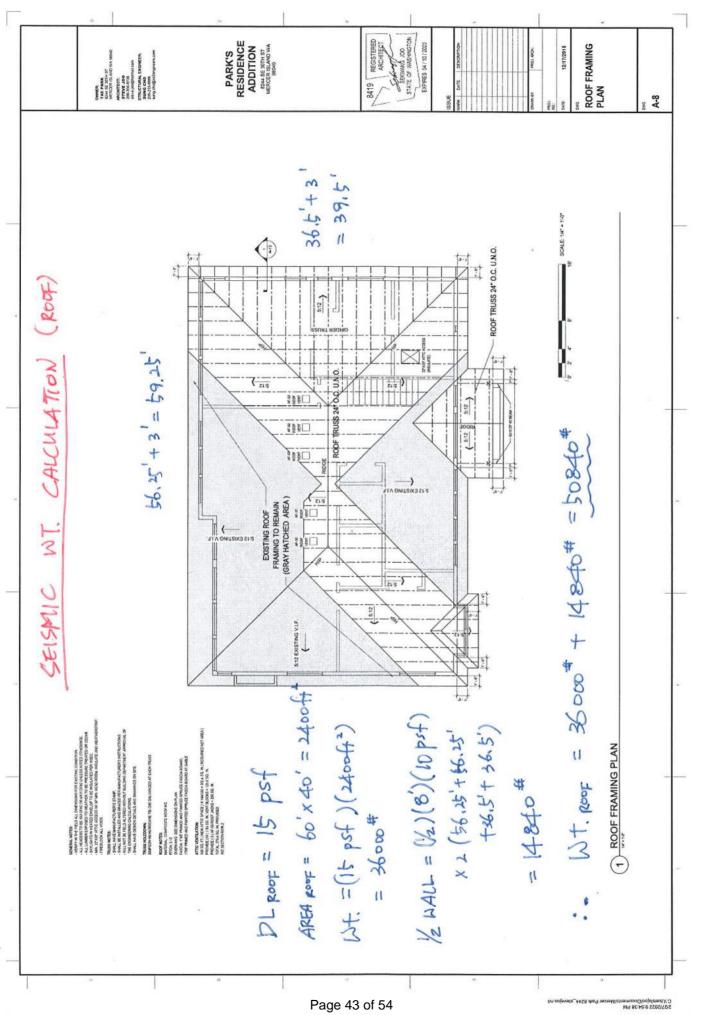
Statutory requirements of the Authority Having Jurisdiction are not included.

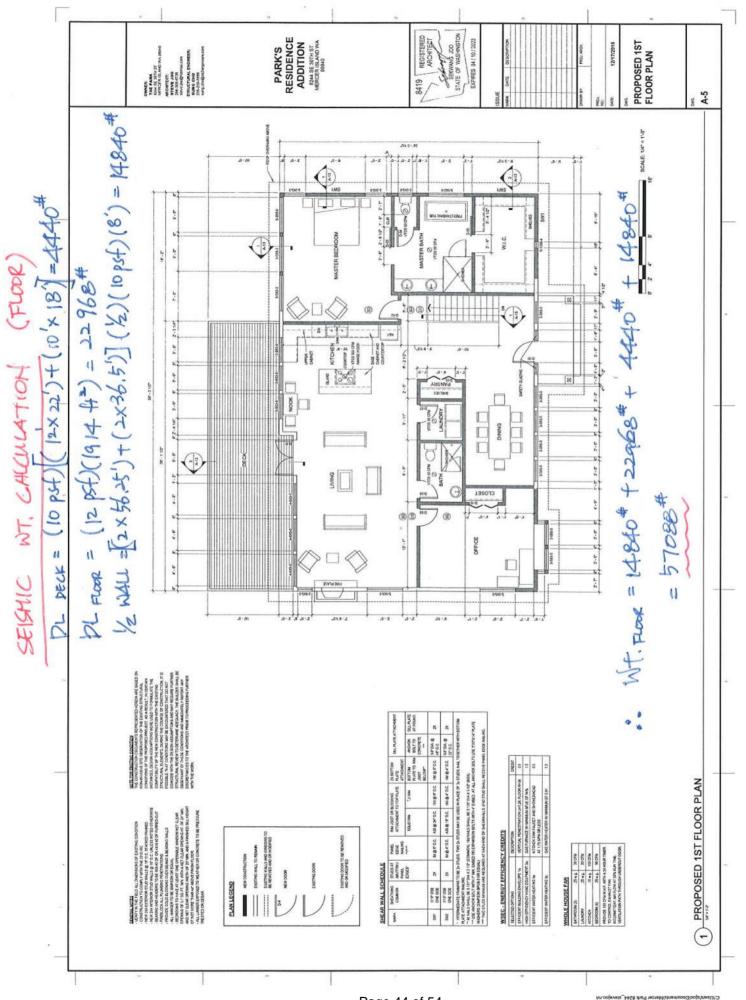
The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

CS2 ENG	NEE	5	Client:	Owner		Job No.:	2207
Civil & Structural Challenge & Success		By:	S. Cho	S. Cho		3/28/22	
		Subject:	Design Calculations		Page:		
esign & Loading Criteria							
Roof Dead Load:				Floor Dead Load:			
Roofing =	2.8	psf		Floor Cover =	1.0	psf	
Insulation =	2.5	psf		Insulation =	1.0	psf	
Roof sheathing =	1.7	psf		Floor sheathing =	2.7	psf	
Rafters @ 24" o.c. =	3.0	psf		Joists @ 16" o.c. =	2.8	psf	
5/8" GWB =	2.8	psf		5/8" GWB =	2.8	psf	
M & E =	0.5	psf		M & E =	1.0	psf	
Miscellaneous =	1.0	psf		Miscellaneous =	0.5	psf	
Roof dead load total =	14.3	psf		Floor dead load total =	11.8	psf	-
USE =	15.0	psf		USE =	12.0	psf	
Roof Live Load:	25	psf		Floor Live Load:	40	psf	
Total Roof Load =	40.0	psf		Total Floor Load =	52.0	psf	7

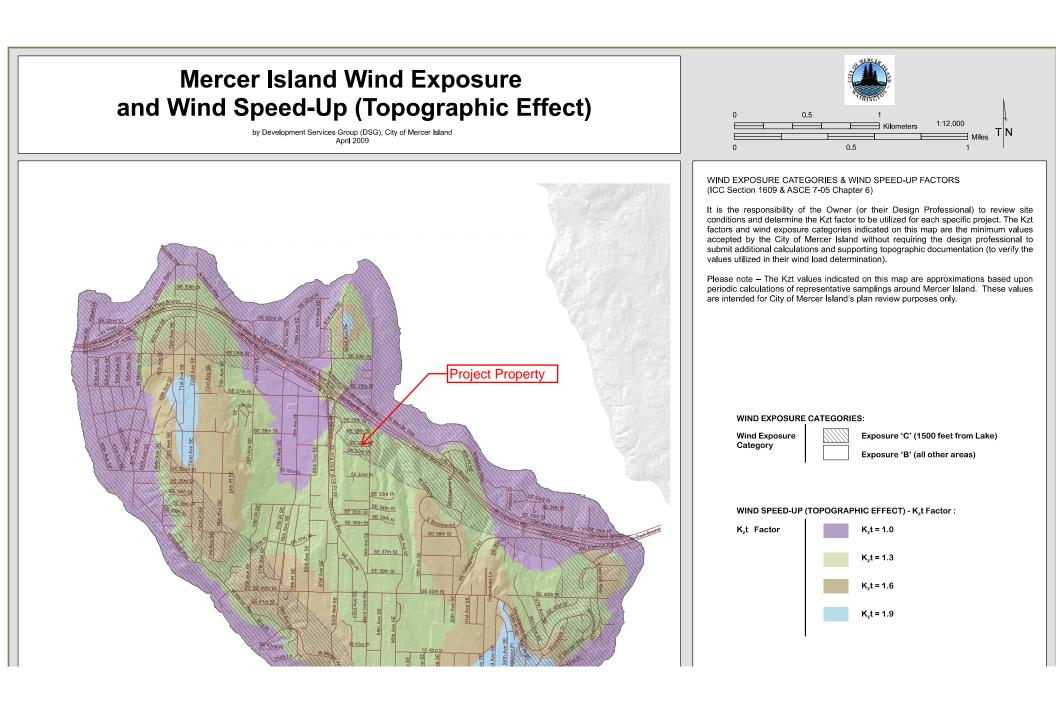

USE =	10.0	psf	
Wall dead load total =	9.3	psf	
Miscellaneous =	0.5	psf	
Siding =	2.0	psf	
Insulation =	1.0	psf	
Gypsum sheathing =	2.0	psf	
7/16" Sheathing =	1.8	psf	
2x Stud @ 16" o.c. =	2.0	psf	
Wall Dead Load:			


DESIGN REFERENCES:

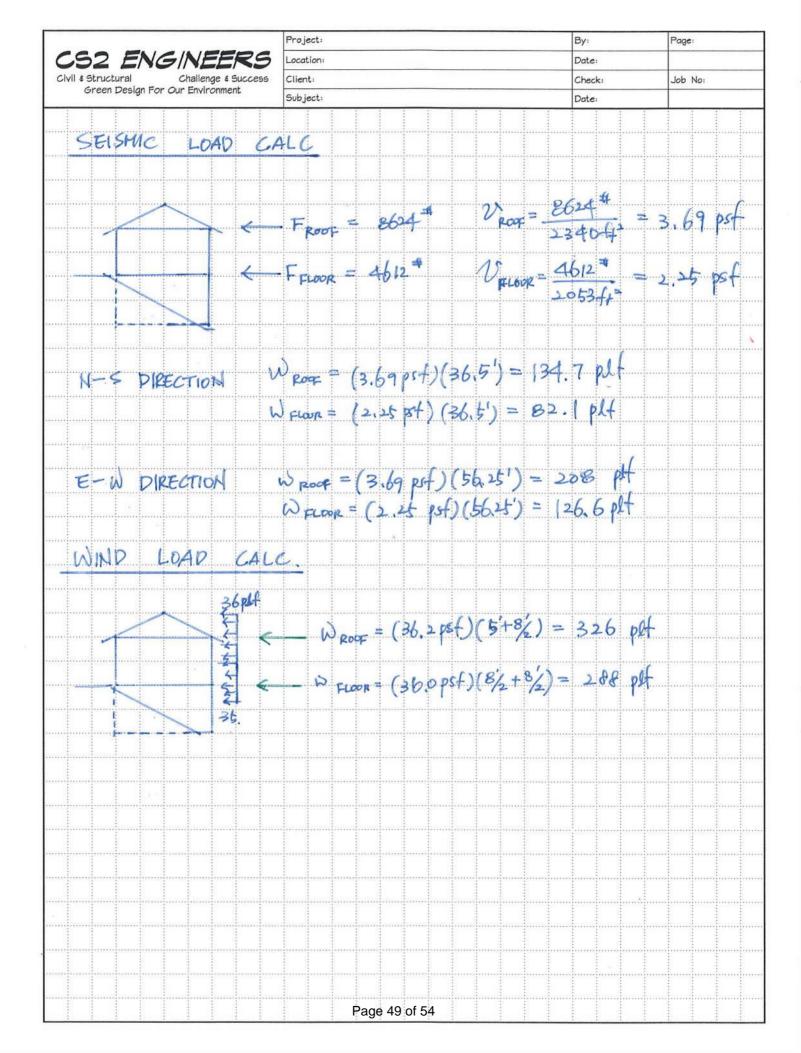
ASCE 7-16, MINIMUM DESIGN LOADS FOR BUILDINGS AND OTHER STRUCTURE.
IBC 2018, INTERNATIONAL BUILDING CODE 2018.
ACI 318-14, BUILDING CODE REQUIREMENTS FOR STRUCTURAL CONCRETE AND COMMENTARY.
NDS 2018, NATIONAL DESIGN SPECIFICATION FOR WOOD CONSTRUCTION WITH COMMENTARY.

·AWC SDPWS-2015, SPECIAL DESIGN PROVISIONS FOR WIND AND SEISMIC WITH COMMENTARY.

·AISC 360-16, SPECIFICATION FOR STRUCTURAL STEEL BUILDINGS: STEEL DESIGN MANUAL

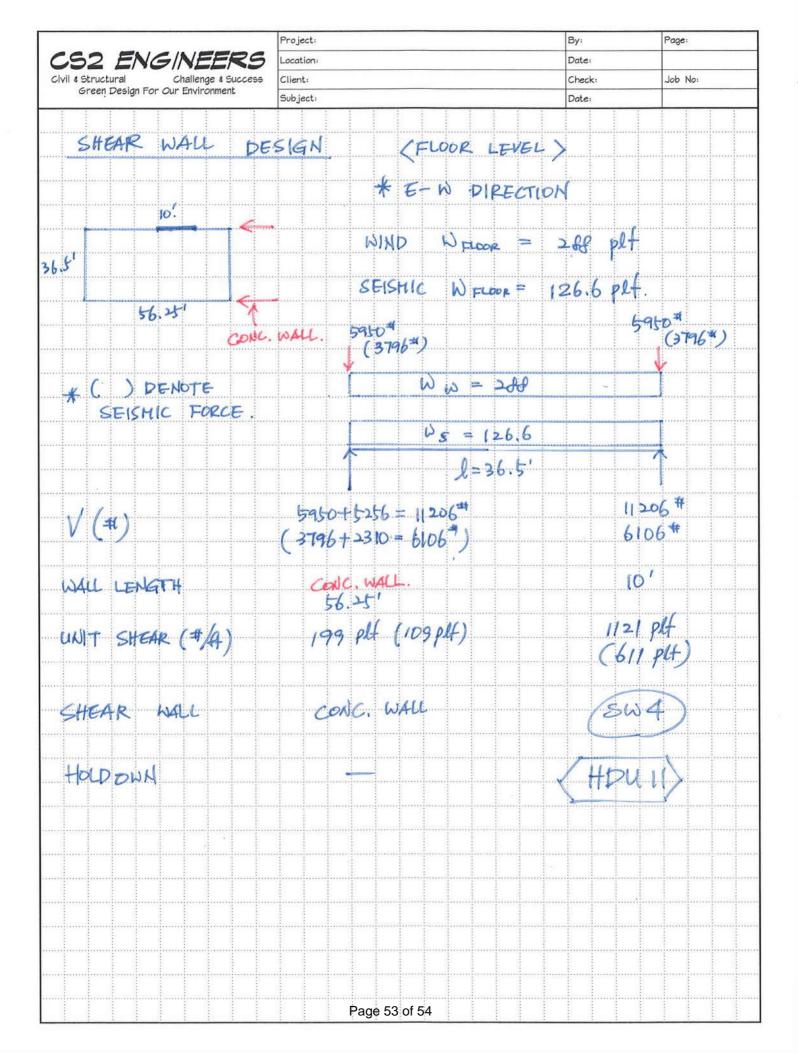


Page 44 of 54


Mag acreation Documentary Mag and Acrea Park 2/27/2022 9:54:36 PM

		INEER	76	Project: Client:	Owner		I (8244 SE 30		Job No.:	2207
	Civil & Stru		_						Date:	
	hallenge & s			By:	S. Cho					3/28/22
				Subject:	Desigr	n Calculat	ions		Page:	
Iculate Seisn	nic Desian E	Base Shear							Per USGS	
	eight, h _h , (ft)				=	16.8	(Mean roof	height)	S _s =	1.395
S _{DS} = 2/3 S	•				=	1.116	, (per USGS	- /	S ₁ =	0.486
S _{D1} = 2/3 S					=	N/A	(per USGS		S _{MS} =	1.674
Risk Catego		Standard-0	Occupancy	Buildings	=	II	(/	S _{M1} =	N/A
-	sign Categoi		,	2	=	D				
	Importance				=	1	(ASCE 7. T	able 11.5.1)		
• •	Modification I	· -			=	6.5	•	able 12.2-1)		
	riod Coefficie				=	0.02	•	able 12.8-2)		
$T = C_t x (h_r)$, t			=	0.166	(ASCE 7, E			
	eriod transac	tion			=	6	(ASCE 7, F			
$C_s = S_{DS}/(R$					=	0.172	(ASCE 7, F	- ,		
But need n					_	V. 17 Z		-y : <u>2.0-</u> 2)		
$C_s = S_{D1}/[T]$					=	N/A	(ASCE 7, E	a 12.8-3)		
But not les	,-						(//002 / , 2	-9 12:0 0)		
	_{DS} I _E ;(not less	s than 0.01)			=	0.049	(ASCE 7, E	a 12.8-5)		
$C_{\rm S} = 0.5S_{\rm 1}/$		(if $S_1 > or = 0$).6g)		=	N/A	(ASCE 7, E	• •		
0		smic Base SI		C _e W. (kins)	=	0.172	x Weight		F _{px, min} =	
		c Base Shea				0.123	x Weight ($F_{px, max} =$	
			.,			0.120	x treight (- px, max	
Component	t Importance t operating w	•			=	1	(ASCE 7, S	Section 13.3)		
					=	W _p	(lb)			
•	•	odification fac			=	2.5	(ASCE 7, T	able 13.5.1		
•	•						(ASCE 7, T	able 13.5.1 a ot exceed 1.		
Height of at	tachment / N	nodification fac lean roof heig	ght, z/h	2xz/h)	= =	2.5 1	(ASCE 7, T (z/h need r			
Height of at	•	hodification factor Mean roof heig $F_p = (0.4a_pS)$	ght, z/h S _{DS} W _P) (1+2	<u>2xz/h)</u>	=	2.5	(ASCE 7, T (z/h need r	ot exceed 1.	0)	
Height of at Seismic De	tachment / N sign Force, I	nodification fac Nean roof heig F _p = <u>(0.4a_pS</u> F	ght, z/h S _{DS} W _P) (1+2 R _p /I _p		= =	2.5 1 0.53	(ASCE 7, 1 (z/h need r 6 W _p	ot exceed 1. (Eq. 13.3-1	0)	
Height of at Seismic De Max. seism	tachment / N sign Force, I ic design for	nodification fac Aean roof heig F _p = <u>(0.4a_pS</u> F ce, F _{pmax} =	ght, z/h S _{DS} W _P) (1+2 R _p /I _p 1.6S _D	_s I _p W _P	= =	2.5 1 0.530 1.780	(ASCE 7, T (z/h need r 6 W _p 6 W _p	ot exceed 1. (Eq. 13.3-1 (Eq. 13.3-2	0))	
Height of at Seismic De Max. seism	tachment / N sign Force, I	nodification fac Aean roof heig F _p = <u>(0.4a_pS</u> F ce, F _{pmax} =	ght, z/h S _{DS} W _P) (1+2 R _p /I _p	_s I _p W _P	= = =	2.5 1 0.530 1.780	(ASCE 7, 1 (z/h need r 6 W _p	ot exceed 1. (Eq. 13.3-1	0))	
Height of at Seismic De Max. seism	tachment / N sign Force, I ic design for	hodification factor Mean roof heig $F_p = (0.4a_pS)$ $F_p = F$ $F_p = F$ $F_p = F_{pmax} = F$ $F_p = F_{pmin} = F$	ght, z/h S _{DS} W _P) (1+2 R _p /I _P 1.6S _D 0.3S _D	_s I _p W _P	= = = =	2.5 1 0.530 1.780	(ASCE 7, 1 (z/h need r 6 W _p 6 W _p 5 W _p	ot exceed 1. (Eq. 13.3-1 (Eq. 13.3-2	0))	
Height of at Seismic De Max. seism	tachment / N sign Force, I ic design for	hodification factor Aean roof heig $F_p = (0.4a_pS)$ $F_p = F$ $F_p = F$	ght, z/h S _{DS} W _P) (1+2 R _p /I _p 1.6S _D 0.3S _D mic Desigr	_S I _p W _P _S I _p W _P	= = = =	2.5 1 0.530 1.780 0.335	(ASCE 7, T (z/h need r 6 W _p 6 W _p 5 W _p 6 W _p	ot exceed 1. (Eq. 13.3-1 (Eq. 13.3-2	0))	
Height of at Seismic De Max. seism	tachment / N sign Force, I ic design forc c design forc	nodification fac Aean roof heig F _p = <u>(0.4a_pS</u> F ce, F _{pmax} = ce, F _{pmin} = <u>Seis</u> <u>Seismic</u>	ght, z/h S _{DS} W _P) (1+2 R _p /I _p 1.6S _D 0.3S _D mic Design Design Fo	_S I _P W _P _S I _P W _P 1 Force, Fp prce, Fp/1.4	= = = =	2.5 1 0.530 1.780 0.33 0.530 0.530	(ASCE 7, T (z/h need r 6 W _p 6 W _p 5 W _p 6 W _p	ot exceed 1. (Eq. 13.3-1 (Eq. 13.3-2 (Eq. 13.3-3	0)))]	1-
Height of at Seismic De Max. seism Min. seismi	tachment / N sign Force, I ic design for	hodification fac Aean roof heig $F_p = (0.4a_pS)$ $F_p = F$ $F_p = F$	ght, z/h S _{DS} W _P) (1+2 R _p /I _p 1.6S _D 0.3S _D mic Design Design Fo	sI _P W _P sI _P W _P n Force, Fp prce, Fp/1.4 W _x h _x	= = = =	2.5 1 0.530 1.780 0.335	(ASCE 7, T (z/h need r 6 W_p 6 W_p 5 W_p 6 W_p 3 W_p F _{x Long}	ot exceed 1. (Eq. 13.3-1 (Eq. 13.3-2	0))) Story	F _{px} , min
Height of at Seismic De Max. seism Min. seismi	tachment / N sign Force, I ic design forc c design forc	hodification fac Mean roof heig $F_p = (0.4a_pS)$ $F_p = F_pmax = 0$ $F_pmin = 0$ Seis Seismic Height h_x (ft)	ght, z/h S _{DS} W _P) (1+2 R _p /I _p 1.6S _D 0.3S _D mic Design Design Fo Weight w _x (lbs)	sI _P W _P sI _P W _P 1 Force, Fp prce, Fp/1.4 W _x h _x (lb-ft)	= = = =	2.5 1 0.53(1.78(0.33) 0.53(0.38) %	(ASCE 7, T (z/h need r 6 W_p 6 W_p 6 W_p 6 W_p 6 W_p 7 W_p 7 W_p	(Eq. 13.3-1 (Eq. 13.3-2 (Eq. 13.3-3) (Eq. 13.3-3)	0))) Story Shear (V _x)	
Height of at Seismic De Max. seism Min. seismi	tachment / N sign Force, I ic design forc c design forc Level R	hodification fac Mean roof heig $F_p = (0.4a_pS)$ $F_p = F_p$ $F_p = F_p$ $F_$	ght, z/h $S_{DS}W_P$) (1+2 R_p/I_p 1.6S _D 0.3S _D mic Design Design Fo Weight W_x (lbs) 50840	sI _P W _P sI _P W _P 1 Force, Fp prce, Fp/1.4 w _x h _x (lb-ft) 854112	= = = =	2.5 1 0.53(1.78(0.33) 0.53(0.33) 0.53(0.38) %	(ASCE 7, T (z/h need r 6 W_p 6 W_p 5 W_p 6 W_p 3 W_p F _{xLong} (lbs) 8624	(Eq. 13.3-1 (Eq. 13.3-2 (Eq. 13.3-3 (Eq. 13.3-3 (Eq. 13.3-3)	0))) Story Shear (V _x) 8624	
Height of at Seismic De Max. seism Min. seismi	tachment / N sign Force, I ic design forc c design forc Level R 2	hodification fac Mean roof heig $F_p = (0.4a_pS)$ $F_p = F_pmax = 0$ $F_pmin = 0$ Seis Seismic Height h_x (ft)	ght, z/h S _{DS} W _P) (1+2 R _p /I _p 1.6S _D 0.3S _D mic Design Design Fo Weight w _x (lbs)	sl _P W _P sl _P W _P n Force, Fp prce, Fp/1.4 w _x h _x (lb-ft) 854112 456704	= = = =	2.5 1 0.530 1.780 0.339 0.530 0.385 %	(ASCE 7, 1 (z/h need r 6 W_p 6 W_p 6 W_p 6 W_p 7 W_p 7 W_p 7 W_p 8 W_p 8 W_p 9 W_p	(Eq. 13.3-1 (Eq. 13.3-2 (Eq. 13.3-3 (Eq. 13.3-3 F _x Coef. 0.170 0.081	0))) Story Shear (V _x) 8624 13236	810
Height of at Seismic De Max. seism	tachment / N sign Force, I ic design forc c design forc Level R 2 1	hodification fac Mean roof heig $F_p = (0.4a_pS)$ $F_p = F_p$ $F_p = F_p$ $F_$	ght, z/h $S_{DS}W_P$) (1+2 R_p/I_p 1.6S _D 0.3S _D mic Design Design Fo Weight w_x (lbs) 50840 57088	sl _P W _P sl _P W _P n Force, Fp prce, Fp/1.4 w _x h _x (lb-ft) 854112 456704 0	= = = =	2.5 1 0.530 1.780 0.335 0.530 0.385 0.385 % 0.35% 0%	(ASCE 7, T (z/h need r 6 W_p 6 W_p 6 W_p 6 W_p 7 W_p 6 W_p 7 W_p 7 W_p 6 W_p 8 W_p 9 W_p	(Eq. 13.3-1 (Eq. 13.3-2 (Eq. 13.3-3 (Eq. 13.3-3 (Eq. 13.3-3)	0))) Story Shear (V _x) 8624	810 F _{px, max}
Height of at Seismic De Max. seism Min. seismi	tachment / N sign Force, I ic design forc c design forc Level R 2	hodification fac Mean roof heig $F_p = (0.4a_pS)$ $F_p = F_p$ $F_p = F_p$ $F_$	ght, z/h $S_{DS}W_P$) (1+2 R_p/I_p 1.6S _D 0.3S _D mic Design Design Fo Weight W_x (lbs) 50840	sl _P W _P sl _P W _P n Force, Fp prce, Fp/1.4 w _x h _x (lb-ft) 854112 456704	= = = =	2.5 1 0.530 1.780 0.339 0.530 0.385 %	(ASCE 7, 1 (z/h need r 6 W_p 6 W_p 6 W_p 6 W_p 7 W_p 7 W_p 7 W_p 8 W_p 8 W_p 9 W_p	(Eq. 13.3-1 (Eq. 13.3-2 (Eq. 13.3-3 (Eq. 13.3-3 F _x Coef. 0.170 0.081	0))) Story Shear (V _x) 8624 13236	810 F _{px, max}
Height of at Seismic De Max. seism Min. seismi	tachment / Ν sign Force, Ι ic design forc c design forc c design forc Level R 2 1 Σ	hodification fac Aean roof heig $F_p = (0.4a_pS)$ $F_p = (0.4a_pS)$ $F_p = F_p$ $F_p = F_p$	ght, z/h $S_{DS}W_P$) (1+2 R_p/I_p 1.6S _D 0.3S _D mic Design Design Fo Weight w_x (lbs) 50840 57088 107928	sl _P W _P sl _P W _P Force, Fp orce, Fp/1.4 w _x h _x (lb-ft) 854112 456704 0 1310816	= = = =	2.5 1 0.53(0.33) 0.53(0.35) 0.53(0.35) 0.53(0.53)(0.53)((ASCE 7, T (z/h need r 6 W_p 6 W_p 5 W_p 6 W_p 7 W_p 6 W_p 7 W_p	(Eq. 13.3-1 (Eq. 13.3-2 (Eq. 13.3-2 (Eq. 13.3-3) F _x Coef. 0.170 0.081 0.000	0))) Story Shear (V _x) 8624 13236 13236	810 F _{px, max}
Height of at Seismic De Max. seism Min. seismi	tachment / N sign Force, I ic design forc c design forc Level R 2 1	hodification fac Aean roof heig $F_p = (0.4a_pS)$ $F_p = (0.4a_pS)$ $F_p = F_pmax = 0$ $F_pmax = 0$ F_pmax	ght, z/h $S_{DS}W_P$) (1+2 R_p/I_p 1.6 S_D 0.3 S_D mic Design Design Fo Weight w_x (lbs) 50840 57088 107928 Weight	sl _P W _P sl _P W _P 1 Force, Fp prce, Fp/1.4 w _x h _x (lb-ft) 854112 456704 0 1310816 w _x h _x	= = = =	2.5 1 0.530 1.780 0.335 0.530 0.385 0.385 % 0.35% 0%	(ASCE 7, T (z/h need r 6 W _p 6 W _p 6 W _p 6 W _p 7 V _p 6 W _p 7 V _p 7 V _p 8 6 V _p 1 3 V _p 8 6 24 4 6 12 0 1 3 2 3 6 F _{x Tras}	(Eq. 13.3-1 (Eq. 13.3-2 (Eq. 13.3-3 (Eq. 13.3-3 F _x Coef. 0.170 0.081	0) Story Shear (V _x) 8624 13236 13236 13236	810 F _{ρx, max} 162
Height of at Seismic De Max. seism Min. seismi	tachment / Ν sign Force, Ι ic design forc c design forc Level R 2 1 Σ Level	hodification fac Aean roof heig $F_p = (0.4a_pS)$ $F_p = (0.4a_pS)$ $F_p = F_pmax = 0$ $F_pmin = 0$ Seismic Seismic Height h_x (ft) Height h_x (ft)	ght, z/h $S_{DS}W_P$) (1+2 R_p/I_p 1.6S _D 0.3S _D mic Design Design For Weight w_x (lbs) 50840 57088 107928 Weight w_x (lbs)	sl _P W _P sl _P W _P n Force, Fp/1.4 w _x h _x (lb-ft) 854112 456704 0 1310816 w _x h _x (lb-ft)	= = = =	2.5 1 0.530 1.780 0.33 0.530 0.38 0.530 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.	(ASCE 7, T (z/h need r 6 W_p 6 W_p 6 W_p 6 W_p 7 W_p 6 W_p 7 W_p 6 W_p 7 W_p	(Eq. 13.3-1 (Eq. 13.3-2 (Eq. 13.3-3 (Eq. 13.3-3 F _x Coef. 0.170 0.081 0.000 F _x Coef.	0) Story Shear (V _x) 8624 13236 13236 13236 Story Shear (V _x)	810 F _{ρx, max} 162
Height of at Seismic De Max. seism Min. seismi	tachment / Ν sign Force, Ι ic design forc c design forc Level R 1 Σ Level R	hodification fac Aean roof heig $F_p = (0.4a_pS)$ $F_p = (0.4a_pS)$ $F_ce, F_{pmax} = 200$ $F_ce, F_{pmin} = 200$ Seismic Seismic Height $h_x (ft)$ 16.8 8 Height $h_x (ft)$ 16.8	ght, z/h $S_{DS}W_P$) (1+2 R_p/I_p 1.6S _D 0.3S _D mic Design Design Fo Weight w_x (lbs) 50840 57088 107928 Weight w_x (lbs) 50840	sl _P W _P sl _P W _P 1 Force, Fp orce, Fp/1.4 W _x h _x (lb-ft) 854112 456704 0 1310816 W _x h _x (lb-ft) 854112	= = = =	2.5 1 0.530 1.780 0.335 0.530 0.385 0.385 0.385 0.385 0.385 0.385 0.385 0.385 0.385 0.385 0.385 0.385 0.530 0.385 0.530 0.385 0.530 0.5500 0.5500 0.5500000000	(ASCE 7, T (z/h need r 6 W_p 6 W_p 6 W_p 6 W_p 7 W_p 6 W_p 7 W_p 6 W_p 7 W_p	ot exceed 1. (Eq. 13.3-1 (Eq. 13.3-2 (Eq. 13.3-3 (Eq. 13.3-3) F _x Coef. 0.170 0.081 0.000 F _x Coef. 0.170	0) Story Shear (V _x) 8624 13236 13236 Story Shear (V _x) 8624	810 F _{ρx, max} 162
Height of at Seismic De Max. seism Min. seismi	tachment / Ν sign Force, Ι ic design forc c design forc Level R 2 1 Σ Level	hodification fac Aean roof heig $F_p = (0.4a_pS)$ $F_p = (0.4a_pS)$ $F_p = F_pmax = 0$ $F_pmin = 0$ Seismic Seismic Height h_x (ft) Height h_x (ft)	ght, z/h $S_{DS}W_P$) (1+2 R_p/I_p 1.6S _D 0.3S _D mic Design Design For Weight w_x (lbs) 50840 57088 107928 Weight w_x (lbs)	sl _P W _P sl _P W _P n Force, Fp/1.4 w _x h _x (lb-ft) 854112 456704 0 1310816 w _x h _x (lb-ft)	= = = =	2.5 1 0.530 1.780 0.33 0.530 0.38 0.530 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.	(ASCE 7, T (z/h need r 6 W_p 6 W_p 6 W_p 6 W_p 7 W_p 6 W_p 7 W_p 6 W_p 7 W_p	(Eq. 13.3-1 (Eq. 13.3-2 (Eq. 13.3-3 (Eq. 13.3-3 F _x Coef. 0.170 0.081 0.000 F _x Coef.	0) Story Shear (V _x) 8624 13236 13236 13236 Story Shear (V _x)	810 F _{ρx, max} 162

	.			Project:	Hous	e Remodel	(8244 SE 30	th St, Merce	er Island)	
C52	ENG	INEE	RS	Client:	Owne	er			Job No.:	2207
	Civil & Stru	uctural		By:	S. Cł				Date:	3/28/22
C	hallenge & s	Success								5/20/22
				Subject:	Desię	gn Calculati	ons		Page:	
			Wind Load	l Calculatio	on (Met	hod 2 - Ana	alytical)			
		(Refere	ence: IBC 2	018, Sectio	n 1609	& ASCE 7-	16, Chapter 2	27)		
Vind Velocity P	<u>ressure:</u>									
Basic Wind	Speed, V_{3s} ,	(mph)			=	98	(ASCE 7-16	, Figure 6-1)	
Exposure C	Category				=	С	(ASCE 7-16	, Section 6.	5.6)	
Building Ca	itegory				=		(IBC Table ²	1604.5)		
	Importance I				=	1.0	(IBC Table [·]	,		
	essure expos		ent, K_z		=	See Table	(ASCE 7-16			
	c Factor, K_{zt}				=	1.30	(ASCE 7-16		,	
Wind Direc	tionality Fact	tor, K_d			=	0.85	(ASCE 7-16	, Table 6-4)).	
Velocity Pre	essure, q_{z,} (l t	o/ft ²)			=	_	K _{zt} K _d V²I _w	•		
					=		(ASCE 7-16		,	
Gust effect	factor, G				=	0.85	(ASCE 7-16	, Section 6.	.5.8)	
	q _h GC _p			istance - 	h GCp		Width, B =	36.5	ft	
		-			7		Length, L =	56	ft	
WIND		- 1				-	to eave, h_e =		ft	
		-			-	-	to ridge, h_r =	21	ft	
q _z GC _p		qh GCp №			 qь (roof height =		ft	
		-				50p	$\theta =$		deg	
	q _h GC _p	+					q_{h} , (lb/ft ²) =	26.69		
	PLAN		F	EVATION		L/B =		20.00		
	PLAN		E	LEVATION		L/B = h/L =	= 1.5	20.00		
Internal Pre	PLAN essure Coeffi	cent, C _{pi}	E =	LEVATION 0.18			= 1.5	=	4.08	
	essure Coeffi	cent, C_{pi}					= 1.5 = 0.3 ▶ q _h GC _{pi}	= (ASCE 7-10		
Internal Pre	essure Coeffi re:		=	0.18		h/L = p = qGC _p -	= 1.5 = 0.3 ▶ q _h GC _{pi} • q_i(GC_{pi})	= (ASCE 7-10	6, Eq 6-17)	1
	essure Coeffi re: Height	cent, C _{pi} K _z				h/L =	= 1.5 = 0.3 ➡ q _h GC _{pi} • q_i(GC_{pi}) Net Pressu	= (ASCE 7-10 ure (p), psf	6, Eq 6-17) Total]
<u>MWFRS Pressu</u>	essure Coeffi r <u>e:</u> Height Z, (ft)	Kz	= q _z or q _h	0.18		h/L = p = qGC _p - qGC _p	= 1.5 = 0.3 ▶ q _h GC _{pi} • q _i (GC _{pi}) Net Pressu (+GCpi)	= (ASCE 7-10 ure (p), psf	6, Eq 6-17) Total Wind Loac	
	essure Coeffi r <u>e:</u> Height Z, (ft)	K z 0.85	= q _z or q _h 23.06	0.18 Cp 0.8		h/L = p = qGC _p - qGC _p 15.68	= 1.5 = 0.3 ▶ q _h GC _{pi} • q _i (GC _{pi}) Net Pressu (+GCpi) 11.60	= (ASCE 7-10 ure (p), psf (-GCpi) 19.77	6, Eq 6-17) Total Wind Loac 35.19	
<u>/WFRS Pressu</u>	essure Coeffi re: Height Z, (ft) 0-15	Kz	= q _z or q _h	0.18		h/L = p = qGC _p - qGC _p	= 1.5 = 0.3 ▶ q _h GC _{pi} • q _i (GC _{pi}) Net Pressu (+GCpi)	= (ASCE 7-10 ure (p), psf (-GCpi)	6, Eq 6-17) Total Wind Loac	-
<u>MWFRS Pressu</u>	essure Coeffi re: Height Z, (ft) 0-15 20	κ _z 0.85 0.90	= q _z or q _h 23.06 24.50	0.18 Cp 0.8 0.8		h/L = p = qGC _p - <u>qGC</u> _p 15.68 16.66	= 1.5 = 0.3 ▶ q _h GC _{pi} • q _i (GC _{pi}) Net Pressu (+GCpi) 11.60 12.58	= (ASCE 7-10 ure (p), psf (-GCpi) 19.77 20.74	6, Eq 6-17) Total Wind Loac 35.19 36.17	
<u>MWFRS Pressu</u>	essure Coeffi re: Height Z, (ft) 0-15 20 25 30	Kz 0.85 0.90 0.95	= qz or qh 23.06 24.50 25.68	0.18 Cp 0.8 0.8 0.8 0.8		h/L = p = qGC _p - <u>qGC</u> _p 15.68 16.66 17.46	= 1.5 = 0.3 → q _h GC _{pi} • q _i (GC _{pi}) Net Pressu (+GCpi) 11.60 12.58 13.38	= (ASCE 7-10 ure (p), psf (-GCpi) 19.77 20.74 21.55	6, Eq 6-17) Total Wind Loac 35.19 36.17 36.97	
MWFRS Pressu	essure Coeffi <u>re:</u> <u>Height</u> <u>Z, (ft)</u> <u>0-15</u> <u>20</u> <u>25</u> <u>30</u> <u>All</u>	Kz 0.85 0.90 0.95	= q _Z or q _h 23.06 24.50 25.68 26.69	0.18 Cp 0.8 0.8 0.8 0.8 0.8		h/L = p = qGC _p - <u>qGC</u> _p 15.68 16.66 17.46 18.15	 1.5 0.3 → q_hGC_{pi} • q_i(GC_{pi}) Net Pressu (+GCpi) 11.60 12.58 13.38 14.06 	= (ASCE 7-10 ure (p), psf (-GCpi) 19.77 20.74 21.55 22.23	6, Eq 6-17) Total Wind Loac 35.19 36.17 36.97	
MWFRS Pressu Winward Wall Leeward Wall	essure Coeffi <u>re:</u> <u>Height</u> <u>Z, (ft)</u> <u>0-15</u> <u>20</u> <u>25</u> <u>30</u> <u>All</u> <u>All</u>	Kz 0.85 0.90 0.95	= q _z or q _h 23.06 24.50 25.68 26.69 26.69	0.18 Cp 0.8 0.8 0.8 0.8 0.8 0.8 -0.5		h/L = p = qGC _p - <u>qGC</u> _p <u>15.68</u> 16.66 17.46 18.15 -11.34	 1.5 0.3 q_hGC_{pi} q_i(GC_{pi}) Net Pressu (+GCpi) 11.60 12.58 13.38 14.06 -15.42 -19.96 -19.96 	= (ASCE 7-10 ure (p), psf (-GCpi) 19.77 20.74 21.55 22.23 -7.26	6, Eq 6-17) Total Wind Loac 35.19 36.17 36.97	
MWFRS Pressu Winward Wall Leeward Wall Side Wall Windward Roof	essure Coeffi re: Height Z, (ft) 0-15 20 25 30 All All -	Kz 0.85 0.90 0.95	= q _z or q _h 23.06 24.50 25.68 26.69 26.69 26.69 26.69 26.69	0.18 Cp 0.8 0.8 0.8 0.8 0.8 0.8 -0.5 -0.7 -0.7 -0.7 -0.18		h/L = p = qGC _p - qGC _p 15.68 16.66 17.46 18.15 - 11.34 -15.88 -15.88 -4.08	 1.5 0.3 q_hGC_{pi} q_i(GC_{pi}) Net Pressu (+GCpi) 11.60 12.58 13.38 14.06 -15.42 -19.96 -19.96 -8.17 	= (ASCE 7-10 ure (p), psf (-GCpi) 19.77 20.74 21.55 22.23 -7.26 -11.80 -11.80 0.00	6, Eq 6-17) Total Wind Loac 35.19 36.17 36.97 37.65	
MWFRS Pressu Winward Wall Leeward Wall Side Wall	essure Coeffi re: Height Z, (ft) 0-15 20 25 30 All All All - -	Kz 0.85 0.90 0.95 0.98	= q z or q _h 23.06 24.50 25.68 26.69 26.69 26.69 26.69 26.69 26.69 26.69	0.18 Cp 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8		h/L = p = qGC _p - qGC _p 15.68 16.66 17.46 18.15 -11.34 -15.88 -15.88	 1.5 0.3 q_hGC_{pi} q_i(GC_{pi}) Net Pressu (+GCpi) 11.60 12.58 13.38 14.06 -15.42 -19.96 -19.96 	= (ASCE 7-10 Jre (p), psf (-GCpi) 19.77 20.74 21.55 22.23 -7.26 -11.80 -11.80	6, Eq 6-17) Total Wind Load 35.19 36.17 36.97 37.65 -4.54	
MWFRS Pressu Winward Wall Leeward Wall Side Wall Windward Roof	re: Height Z, (ft) 0-15 20 25 30 All All All - Horizontal E	Kz 0.85 0.90 0.95 0.98	= q z or q h 23.06 24.50 25.68 26.69 26.69 26.69 26.69 26.69 26.69 26.69 m windward	0.18 Cp 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8		h/L = p = qGC _p - qGC _p 15.68 16.66 17.46 18.15 - 11.34 -15.88 -15.88 -4.08 -11.34	 1.5 0.3 q_hGC_{pi} q_i(GC_{pi}) Net Pressu (+GCpi) 11.60 12.58 13.38 14.06 -15.42 -19.96 -8.17 -15.42 	= (ASCE 7-10 ure (p), psf (-GCpi) 19.77 20.74 21.55 22.23 -7.26 -11.80 0.00 -7.28	6, Eq 6-17) Total Wind Load 35.19 36.17 36.97 37.65 -4.54	
MWFRS Pressu Winward Wall Leeward Wall Side Wall Windward Roof	re: Height Z, (ft) 0-15 20 25 30 All All Horizontal E 0 to h	Kz 0.85 0.90 0.95 0.98	= q z or q h 23.06 24.50 25.68 26.69 26.69 26.69 26.69 26.69 26.69 26.69 26.69 26.69	0.18 Cp 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8		h/L = p = qGC _p - <u>qGC</u> _p 15.68 16.66 17.46 18.15 - 11.34 -15.88 -4.08 -11.34 -20.41	 1.5 0.3 → q_hGC_{pi} • q_i(GC_{pi}) Net Pressu (+GCpi) 11.60 12.58 13.38 14.06 -15.42 -19.96 -19.96 -8.17 -15.42 -15.42 	= (ASCE 7-10 ure (p), psf (-GCpi) 19.77 20.74 21.55 22.23 -7.26 -11.80 0.00 -7.28 -16.33	6, Eq 6-17) Total Wind Load 35.19 36.17 36.97 37.65 -4.54	
MWFRS Pressu Winward Wall Leeward Wall Side Wall Windward Roof	essure Coeffi re: Height Z, (ft) 0-15 20 25 30 All All All All O to h h to 2h	Kz 0.85 0.90 0.95 0.98	= q z or q _h 23.06 24.50 25.68 26.69 26.69 26.69 26.69 26.69 26.69 26.69 26.69 26.69 26.69 26.69 26.69	0.18 Cp 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8		h/L = p = qGC _p - <u>qGC</u> _p <u>15.68</u> 16.66 17.46 18.15 - 11.34 -15.88 -15.88 -4.08 -11.34 -20.41 -11.34	 1.5 0.3 q_hGC_{pi} q_i(GC_{pi}) Net Pressu (+GCpi) 11.60 12.58 13.38 14.06 -15.42 -19.96 -19.96 -8.17 -15.42 -19.96 -48.17 -15.42 -19.42 	= (ASCE 7-10 ure (p), psf (-GCpi) 19.77 20.74 21.55 22.23 -7.26 -11.80 -11.80 0.00 -7.28 -16.33 -7.26	6, Eq 6-17) Total Wind Load 35.19 36.17 36.97 37.65 -4.54	
MWFRS Pressu Winward Wall Leeward Wall Side Wall Windward Roof	re: Height Z, (ft) 0-15 20 25 30 All All Horizontal E 0 to h	Kz 0.85 0.90 0.95 0.98	= q z or q h 23.06 24.50 25.68 26.69 26.69 26.69 26.69 26.69 26.69 26.69 26.69 26.69	0.18 Cp 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8		h/L = p = qGC _p - <u>qGC</u> _p 15.68 16.66 17.46 18.15 - 11.34 -15.88 -4.08 -11.34 -20.41	 1.5 0.3 → q_hGC_{pi} • q_i(GC_{pi}) Net Pressu (+GCpi) 11.60 12.58 13.38 14.06 -15.42 -19.96 -19.96 -8.17 -15.42 -15.42 	= (ASCE 7-10 ure (p), psf (-GCpi) 19.77 20.74 21.55 22.23 -7.26 -11.80 0.00 -7.28 -16.33	6, Eq 6-17) Total Wind Load 35.19 36.17 36.97 37.65 -4.54	
MWFRS Pressu Winward Wall Leeward Wall Side Wall Windward Roof	essure Coeffi re: Height Z, (ft) 0-15 20 25 30 All All All All O to h h to 2h > 2h (Where h =	Kz 0.85 0.90 0.95 0.98 Distance from	= q z or q _h 23.06 24.50 25.68 26.69	0.18 Cp 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8		h/L = p = qGC _p - <u>qGC</u> _p <u>15.68</u> 16.66 17.46 18.15 - 11.34 -15.88 -15.88 -4.08 -11.34 -20.41 -11.34	 1.5 0.3 q_hGC_{pi} q_i(GC_{pi}) Net Pressu (+GCpi) 11.60 12.58 13.38 14.06 -15.42 -19.96 -19.96 -8.17 -15.42 -19.96 -48.17 -15.42 -19.42 	= (ASCE 7-10 ure (p), psf (-GCpi) 19.77 20.74 21.55 22.23 -7.26 -11.80 -11.80 0.00 -7.28 -16.33 -7.26	6, Eq 6-17) Total Wind Load 35.19 36.17 36.97 37.65 -4.54	
Winward Wall Winward Wall Leeward Wall Side Wall Windward Roof	essure Coeffi re: Height Z, (ft) 0-15 20 25 30 All All All All O to h h to 2h > 2h (Where h = Vertical Wa	Kz 0.85 0.90 0.95 0.98 Distance from	= q z or q _h 23.06 24.50 25.68 26.69 26.69 26.69 26.69 26.69 26.69 26.69 26.69 26.69 126.69 26.69 26.69 126.69 26.69 26.69 126.75 126	0.18 Cp 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8		h/L = p = qGC _p - qGC _p 15.68 16.66 17.46 18.15 -11.34 -15.88 -15.88 -4.08 -11.34 -20.41 -11.34 -6.80	 1.5 0.3 q_hGC_{pi} q_i(GC_{pi}) Net Pressu (+GCpi) 11.60 12.58 13.38 14.06 -15.42 -19.96 -8.17 -15.42 -19.96 -8.17 -15.42 -10.89 	= (ASCE 7-10 ure (p), psf (-GCpi) 19.77 20.74 21.55 22.23 -7.26 -11.80 -11.80 0.00 -7.28 -16.33 -7.26	6, Eq 6-17) Total Wind Load 35.19 36.17 36.97 37.65 -4.54	
Winward Wall Winward Wall Leeward Wall Side Wall Windward Roof	essure Coeffi re: Height Z, (ft) 0-15 20 25 30 All All All All All O to h h to 2h > 2h (Where h = Vertical Wa Vertical Ro	K _z 0.85 0.90 0.95 0.98 Distance from 21	= q z or q _h 23.06 24.50 25.68 26.69 26.69 26.69 26.69 26.69 26.69 26.69 26.69 26.69 26.69 26.69 26.69 1000000000000000000000000000000000000	0.18 Cp 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8		h/L = p = qGC _p - <u>qGC</u> _p <u>15.68</u> 16.66 17.46 18.15 - 11.34 -15.88 -15.88 -4.08 -11.34 -20.41 -11.34	 1.5 0.3 q_hGC_{pi} q_i(GC_{pi}) Net Pressu (+GCpi) 11.60 12.58 13.38 14.06 -15.42 -19.96 -19.96 -8.17 -15.42 -19.96 -48.17 -15.42 -19.42 	= (ASCE 7-10 ure (p), psf (-GCpi) 19.77 20.74 21.55 22.23 -7.26 -11.80 -11.80 0.00 -7.28 -16.33 -7.26	6, Eq 6-17) Total Wind Load 35.19 36.17 36.97 37.65 -4.54	
MWFRS Pressu Winward Wall Leeward Wall Side Wall Windward Roof	essure Coeffi re: Height Z, (ft) 0-15 20 25 30 All All All All O to h h to 2h > 2h (Where h = Vertical Wa	Kz 0.85 0.90 0.95 0.98	= q z or q _h 23.06 24.50 25.68 26.69 26.69 26.69 26.69 26.69 26.69 26.69 26.69 26.69 26.69 26.69 126.69 26.69 26.69 26.69 100 100 100 100 100 100 100 10	0.18 Cp 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8		h/L = p = qGC _p - qGC _p 15.68 16.66 17.46 18.15 -11.34 -15.88 -15.88 -4.08 -11.34 -20.41 -11.34 -6.80	 1.5 0.3 q_hGC_{pi} q_i(GC_{pi}) Net Pressu (+GCpi) 11.60 12.58 13.38 14.06 -15.42 -19.96 -8.17 -15.42 -19.96 -8.17 -15.42 -10.89 	= (ASCE 7-10 ure (p), psf (-GCpi) 19.77 20.74 21.55 22.23 -7.26 -11.80 -11.80 0.00 -7.28 -16.33 -7.26	6, Eq 6-17) Total Wind Load 35.19 36.17 36.97 37.65 -4.54	


Pi	oject:	By:	Page:
s2 <i>Engineers</i> 🛙	cation:	Date:	
ril & Structural Challenge & Success C	ient:	Check:	Job No:
Green Design For Our Environment	bject:	Date:	
Allowable Shear Wall Capacity	per SDPWS 2015 Table 4.3A)		
% Assume Hem. Fir Stud Wall (G	= 0.43)		
% Assume 7/16" Wood Structural	Panel - Structural I with 10d comr	non nails	
% Assume 12" o.c. on field fasten	erspacing		
A) Seismic Force Panel Edge Fas	tanar		
A) Seismic I Dice Faller Luge I as			
at 6" o.c. = (680 [#] /2) [1-(0.5-0.43)]	= 316 plf (SW-1)		
at 4" o.c. = (1020#/2) [1-(0.5-0.43)]	= 474 plf (SW-2)		
at 3" o.c. = (1330 [#] /2) [0.93] = 618	olf (SW-3)		
at 2" o.c. = (1740 [#] /2) [0.93] = 809	olf (SW-4)		
a(2, 0.0) = (174072) [0.93] = 009			
B) Wind Force Panel Edge Faster	<u>er</u>		
at 6" o.c. = (950#/2) [1-(0.5-0.43)]	- 112 plf		
a(0, 0.0, -(0.0072)[1-(0.0-0.+0)]	= 442 plf (SW-1)		
at 4" o.c. = (1430*/2) [1-(0.5-0.43)]	= 665 plf (SW-2)		
)		
at 3" o.c. = (1860 [#] /2) [0.93] = 865	olf (SW-3)		
at 2" o.c. = (2435 [#] /2) [0.93] = 1132	plf (SW-4)		
	Page 48 of 54		

	Project:	By:	Page:
CS2 ENGINEERS	Location:	Date:	
ivil & Structural Challenge & Success	Client:	Check:	Job No:
Green Design For Our Environment	Subject:	Date:	
SHEAR WALL DESIG	DENT ITITI		
SI WAR WAR DESIG	in < roof level,	2	
	*N-S DIRECTION		
		~ 11	
	WIND WROOF = 3	s26 plt	
36.5'			
	SEISHIC WROOF =	134.7 plt	
1 56.251 1			
		1	
	$W_{W} = 326 p$	<u> </u>	
F () DENOTE	Ws= 134.7	PLF	
SEISMIC FORCE.			
PEISINC INTE.	1 = 56.	25.	
1	9169#	916	9 [#] Pf [#])
V (#)	(3788*)	(370	Pf T)
ter			`
11CAD WALL WELLING (I)			
HEAR WALL LENGTH (A)	u <i>l (</i>	10,51+8	3.5' = 19
HEAR WALL LENGTH (ff) UNIT SHEAR (*/4)	834 plf	483	plf
			plf
UNIT SHEAR (*/4+)	834 plf (344 plf)	483 (199)	plf kf-)
UNIT SHEAR (*/4+)	834 plf	483	plf kf-)
	834 plf (344 plf)	483 (199)	plf kf-)
UNIT SHEAR (*/4+)	834 plf (344 plf)	483 (199 p (20)2	p# #
UNIT SHEAR (*/4+) SHEAR WALL TYPE	834 plf (344 plf) (SW3)	483 (199)	p# #
UNIT SHEAR (*/4+) SHEAR WALL TYPE	834 plf (344 plf)	483 (199 p (20)2	p# #
UNIT SHEAR (*/4+) SHEAR WALL TYPE	834 plf (344 plf) (SW3)	483 (199 p (20)2	p# #
UNIT SHEAR (*/4+) SHEAR WALL TYPE	834 plf (344 plf) (SW3)	483 (199 p (20)2	plf (4)
UNIT SHEAR (*/4+) SHEAR WALL TYPE	834 plf (344 plf) (SW3)	483 (199 p (20)2	plf (4)
UNIT SHEAR (*/4+) SHEAR WALL TYPE	834 plf (344 plf) (SW3)	483 (199 p (20)2	plf (4)
UNIT SHEAR (*/4+) SHEAR WALL TYPE	834 plf (344 plf) (SW3)	483 (199 p (20)2	p£ f &4_))
UNIT SHEAR (*/4+) SHEAR WALL TYPE	834 plf (344 plf) (SW3)	483 (199 p (20)2	plf (4)
UNIT SHEAR (*/4+) SHEAR WALL TYPE	834 plf (344 plf) (SW3)	483 (199 p (20)2	plf (4)
UNIT SHEAR (*/4+) SHEAR WALL TYPE	834 plf (344 plf) (SW3)	483 (199 p (20)2	plf (4)
UNIT SHEAR (*/4+) SHEAR WALL TYPE	834 plf (344 plf) (SW3)	483 (199 p (20)2	plf (4)
UNIT SHEAR (*/4+) SHEAR WALL TYPE	834 plf (344 plf) (SW3)	483 (199 p (20)2	plf (4)
UNIT SHEAR (*/4+) SHEAR WALL TYPE	834 plf (344 plf) (SW3)	483 (199 p (20)2	plf (4)
UNIT SHEAR (*/4+) SHEAR WALL TYPE	834 plf (344 plf) (SW3)	483 (199 p (20)2	p# #

	Project:	By: Page:
S2 ENGINEERS	Location:	Date:
vil & Structural Challenge & Succes		Check: Job No:
Green Design For Our Environment	Subject:	Date:
SHEAR WALL DESI	GA (FLOOR LEVEL)	
2.0.1	The Street Course /	9
	* NI-S DIRECTION	
	WIND WFWOR = 288	plf
365'		t t t t t t
203	SEISMIC W FLOOR = 82	J bl f
	an de la comparado de la compa	9616
56.25'	3169*	10.10
	(3788*)	<u> </u>
	Www = 288 plf	
F () DENOTE		
SEISMIC FORCE	$W_{c} = 82.1 pt$	
DEIDINIC FUNCE		
	l=56.25'	
	9169+8100= 17269*	17269*
V (#)	(3788+2309 = 6097*)	6097#
HEAR WALL LENGTH (4)	15	17.5 + 8.5'= 26
CENUM (TT)		1105 - 15 -
MANUT FULLAS (#/)	[15] plf	1/1 01
UNIT SHEAR (#1/4)		664 plt
	(406 plf)	(· 235 plf)
SHEAR WALL	(SW4)	(SW2)
		11-4
HOLDOW	< H DU II >	(HTT 5)
	Page 51 of 54	

	Project:	By:	Page:
CS2 ENGINEERS	Location:	Date:	
ivil & Structural Challenge & Success	Client:	Check:	Job No:
Green Design For Our Environment	Subject:	Date:	
CHEAR WALL DEC	101		
SHEAR WALL DES	IGN (ROOF	LEVELY	
	₩ E-W	DIRECTION	
	Nuls ()		
	NINP N	ROOF = 326 f	<u>2</u> 1
6.5			,
	SEISHIC	WROOF = 208 P.	l 1
56.251			
+			-
* () DENOTE	10 w = 3	to plt	<u>_</u>
N S J ECHVIE		w	
SEISHIC FORCE	$W_{\varsigma} = 2$	08 pet	
			7
	l =	36.5	
√ (株)	59,50#	59	50#
1 N 7	(3796*)	(37	96*)
LIXIN I FUCTH ((1))	Bel 1 (-)	5 7	5'+4'
WALL LENGTH (ff)	5,5'+7,5'+7'		
	= -20'	NEED HOPE	
		LENGT	f
WIT SHEAR (#/A)	298 plf	ND ++B	Telt
	(100 24)	6000.	
	(190 plf)	59to#	a1 = -1841
		/ / / /	8 1
		3796#/	1 = 475 pl
SHEAR WALL TYPE	SWD		
Suerin 194		(SW3	>
HOLDOWN	<pre>(HTT5)</pre>	MSTC	4
		→→→	
	Page 52 of 54		

Project:	8244 SE 30 th St (#545230-0816)	Date:	March 28, 2022
Location:	Mercer Island, WA	Prepared By:	S. Cho
CS2 No:	2207	Page	

Appendix

LTT/HTT

Tension Ties

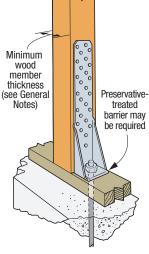
Tension ties offer a solution for resisting tension loads that are fastened with nails or Strong-Drive[®] SD Connector screws. The new LTTP2 light tension tie, designed for wood joist attachments to concrete or masonry walls, features two separate nailing patterns: obround holes spaced 3" apart for I-joist purlins and square holes spaced to accommodate the narrow face of 2x solid-sawn purlins. LTTP2 may also be installed vertically on the wide face of a minimum 2x4 stud for holdown application. It features an extruded anchor bolt hole to accommodate 34", 54" and 1/2" bolt diameters.

The LTTI31 is designed for wood chord open-web truss attachments to concrete or masonry walls and may also be installed vertically on a minimum 2x6 stud.

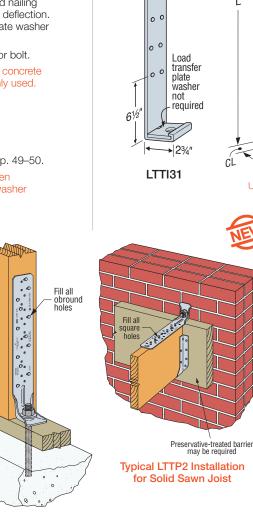
The HTT4 and HTT5 tension ties feature an optimized nailing pattern which results in better performance with less deflection. HTT5KT is sold as a kit with the holdown, bearing plate washer and Strong-Drive SD Connector screws.

The HTT5-¾ is designed to use a ¾"-diameter anchor bolt.

When using LTT or HTT tension ties with unreinforced concrete masonry, $\frac{3}{4}$ " post-installed anchor bolts are commonly used.


Material: See table

Finish: Galvanized. May be ordered HDG; contact Simpson Strong-Tie.


Installation:

- See Holdown and Tension Tie General Notes on pp. 49-50.
- LTTP2 one standard cut-washer is required when using ½" and 5%" anchor bolts; and no additional washer is required for 34" anchor bolts.
- LTTP2 For installations on narrow edge of solid sawn (2x, 3x) joists use (15) square holes; for all other installations use (12) obround holes.
- For tension ties installed over wood structural panel sheathing, use a 2½"-long fastener minimum.
- For information about marriage strap at panelized roof applications, see strongtie.com.
- HTT5-KT requires BP 5/8-2 bearing plate and #10 x 2½" SD Strong-Drive screws (included in kit).

Codes: See p. 11 for Code Reference Key Chart

Vertical HTT5 Installation (HTT4 similar)

00

00

0 0

0 0

0 0

6″ o c

11/16

- W

ø

0

0

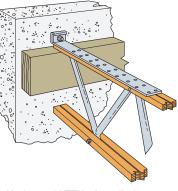
Øn

11/16

Hanger not shown for clarity

Typical LTTP2 Installation

for Holdown Application


Horizontal HTT Installation

SIMPSON

Strong-Tie

Typical LTTP2 Installation for I-joist

Horizontal LTTI31 Installation

LTT/HTT

Tension Ties (cont.)

These products are available with additional corrosion protection. For more information, see p. 14.

SD Many of these products are approved for installation with Strong-Drive[®] SD Connector screws. See pp. 348–352 for more information.

	Model No. G		Di	mensio (in.)	ns	S 0	Fa	isteners (in.)	Minimum Wood Member Size	Allowable Te (16		Deflection at Highest	Code
			W	L	CL	(in.)	Anchor <mark>Rod</mark> Diameter	Wood Fasteners	(in.)	DF/SP	SPF/HF	Allowable Load (in.)	Ref.
							1⁄2, 5⁄8, 3⁄4	(15) 0.148 x 2½	1 1/2 x 3 1/2 (narrow edge) ^{4,5}	1,845	1,695	0.104	
							1⁄2	(12) 0.148 x 1½	1½ x 3½	1,680 ⁶	1,545 ⁶	0.138	
(LTTP2	10	2%16	1415/16	11/8	7/16	5⁄8, 3⁄4	(12) 0.140 X 1 72	1 72 X 3 72	2,135	1,965	0.112	
9	LIIFZ	10	2 716	14 716	1 78	716	1⁄2	(12) #9 x 1½" SD	1 ½ x 3½ 3 x 3½	2,320	1,970	0.112	IBC, FL, LA
							5⁄8, 3⁄4	(12) #9 X 1 72 3D		2,570	2,045	0.136	12,27
							1⁄2, 5⁄8, 3⁄4	(12) 0.148 x 2½		2,275	2,230	0.128	
	LTTI31	18	3¾	31	1¾	1⁄4	5⁄8	(18) 0.148 x 1 ½	3 x 31⁄2	1,350	1,160	0.193	
								(18) 0.148 x 11⁄2	1 ½ x 3½	3,000	2,580	0.090	—
								(18) 0.148 x 11⁄2	3 x 31⁄2	3,610	3,105	0.086	IBC,
	HTT4	11	21⁄2	12%	1 %16	7⁄16	5⁄8	(18) 0.162 x 21⁄2	3 x 31⁄2	4,235	3,640	0.123	FL, LA
								(18) #10 x 11⁄2" SD	1 ½ x 5½	4,455	3,830	0.112	
								(18) #10 x 11⁄2" SD	3 x 31⁄2	4,455	3,830	0.112	
								(26) 0.148 x 1 ½	3 x 31⁄2	4,350	3,740	0.120	
	HTT5	11	21/2	16	1 7⁄16	7⁄16	5/8	(26) 0.148 x 3	3 x 31⁄2	4,670	4,015	0.116	IBC, FL, LA
	IIIIJ		272		1 7 16	716	78	(26) 0.162 x 21/2	3 x 31⁄2	5,090	4,375	0.135	,
								(26) #10 x 1 ½" SD	1 ½ x 5½	4,555	3,915	0.114	
	HTT5KT	11	21⁄2	16	1 7⁄16	7⁄16	5⁄8	(26) #10 x 21⁄2" SD	3 x 31⁄2	5,445	5,360	0.103	
								(26) 0.148 x 11⁄2	1 ½ x 5½	4,065	3,495	0.103	
	HTT5-3/4	11	21⁄2	16	1 7⁄16	7⁄16	3⁄4	(26) 0.162 x 21⁄2	3 x 31⁄2	5,090	4,375	0.121	IBC, FL
								(26) #10 x 1 ½" SD	1 ½ x 7 ¼	4,830	4,155	0.100	

1. LTTI31 installed flush with concrete or masonry has an allowable load of 2,285 lb.

2. Allowable load for HTT5 with a BP5/8-2 bearing-plate washer installed in the seat of the holdown is 5,295 lb. for DF/SP and 4,555 lb. for SPF/HF. 3. For LTTP2, standard cut washer is required when using 1/2" and %" anchor rods.

4. For (15) nail installations on narrow edge of 2x4 (minimum) joist, LTTP2 installed flush with concrete or masonry has an allowable load of 2,560 lb. for DF/SP and 2,355 lb. for SPF/HF.

5. LTTP2 installed with (15) #9 x 1 ½" SD screws on narrow edge of 2x joist has an allowable load of 2,105 lb. for DF/SP and 1,935 lb. for SPF/HF. 6. For (12) nail installations on I-joist or wide face of 2x member, LTTP2 installed flush with concrete or masonry has an allowable load of

 1,950 lb. for DF/SP and 1,795 lb. for SPF/HF.
 7. Fasteners: Nail dimensions are listed diameter by length. SD screws are Simpson Strong-Tie[®] Strong-Drive SD Connector screws. See pp. 21–22 for fastener information.

Holdown				Stemwall									
on DF/SP	Stemwal Width	II Win	d and Seisn Category		Seismic Design Category C–F		Wind and Sei: Categor		Seismic Design Category C–F				
Lumber	(in.)	Midwal	/Corner	End Wall	Midwall/Corner	End Wall	Midwall/Corner	Garage Curb	Midwall/Corner	Garage Curb			
HDU2	6		SSTB1	6	SSTB2	4	SSTE	316	SSTB16	SSTB20* (2,960)			
HDU4	6		SB5/8X	24	SB5/8)	24	SSTB16	SB5/8X24	SSTB20	SB5/8X24			
HDU5	6		SB5/8X	24	SB5/8X	24	SSTB20	SB5/8X24	SSTB24	SB5/8X24			
HDU8 HDQ8	Ta	able 2	— An	chorage	Selection	Guide for	r Holdown	s Attache	d to SPF/	HF Lumbe	r		
HDU11		Holdown			Stemwall				Slab	on Grade			
HHDQ11 HDU14	- '	on SPF/HF	Stemwall Width		eismic Design Jory A&B	Seismic Design Category C–F			Wind and Seismic Design Category A&B		Seismic Design Category C–F		
HHDQ14		Lumber	(in.)	Midwall/Corner	End Wall	Midwall/Corne	er End Wall	Midwall/Corn	er Garage Curb	Midwall/Corner	Garage Curb		
LTTP2		HDU2	6	SS	TB16	S	STB16	5	SSTB16		SSTB16		
LTTI31		HDU4	6	SS	TB16	S	STB24	5	SSTB16		SSTB24		
HTT4		HDU5	6	SSTB2	4* (4,295)	SE	35/8X24	SSTB16	SSTB24* (4,29	5) SSTB20	SB5/8X24		
HTT5		HDU8	8	SS	TB28	SSTB28	SSTB28* (6,395	i) 5	STB28	SSTB28	SSTB28		
HD3B		HDQ8	8	SS	TB28	SSTB28	SSTB28* (6,395	i) 5	STB28	SSTB28	SSTB28		
HD5B		HDU11	8	SB1X30* (9,505)) PAB8	PAB8	PAB8		224.00				
HD7B		HHDQ11	8	SB1X30	PAB8		PAB8	1 ;	SB1x30	SB	1x30		
HD9B		HDU14	_		4.00		DADO		004.00				
HD12		PAB8 PAB8			SB1x30 SB1:								
ee foonotes	be	LTTP2	6		7040		07040		07040		5040		
		LTTI31	6	1 55	TB16	SSTB16		1	SSTB16		SSTB16		
		HTT4	6	SS	TB20	SE	35/8X24	SSTB16	SSTB20	SSTB16* (3,780)	SB5/8X24		
		HTT5	6	SBS	5/8X24	SE	35/8X24	SSTB20	SB5/8X24	SSTB24	SB5/8X24		
		UD2D	6		TD16		строл	1	CTD1C	CCTD16	CCTD20* /2 060		

We've made selecting the right anchor bolt for the holdown easier. Check out our Holdown Anchorage Solutions table on p. 44 or the Post-to-Foundation Designer at app.strongtie.com/pfd.

SIMPSO

Strong-T

HDU/DTT

Holdowns SINEERED

This product is preferable to similar connectors because of (a) easier installation, (b) higher loads, (c) lower installed cost, or a combination of these features.

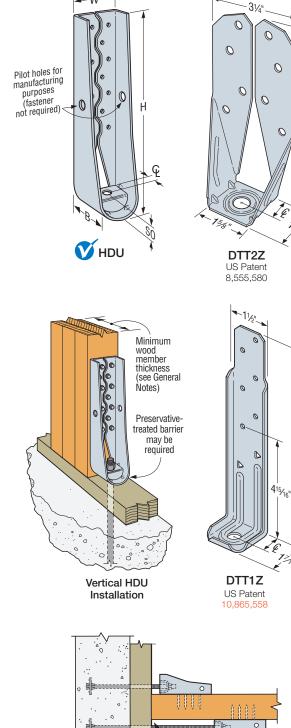
HDU holdowns are pre-deflected during the manufacturing process, virtually eliminating deflection under load due to material stretch. They use Strong-Drive® SDS Heavy-Duty Connector screws which install easily, reduce fastener slip and provide a greater net section when compared to bolts.

The DTT tension ties are designed for lighter-duty holdown applications on single 2x posts. The DTT1Z is installed with nails or Strong-Drive SD Connector screws and the DTT2 installs easily with the Strong-Drive SDS Heavy-Duty Connector screws (included). The DTT1Z holdowns have been tested for use in designed shearwalls and prescriptive braced wall panels as well as prescriptive wood-deck applications (see p. 295 for deck applications).

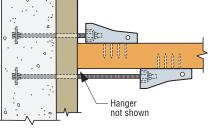
For more information on holdown options, contact Simpson Strong-Tie.

HDU Features:

- Uses Strong-Drive SDS Heavy-Duty Connector screws which install easily, reduce fastener slip and provide a greater net section area of the post compared to bolts
- Strong-Drive SDS Heavy-Duty Connector screws are supplied with the holdowns to ensure proper fasteners are used
- No stud bolts to countersink at openings


Material: See table

Finish: HDU - galvanized; DTT1Z and DTT2Z - ZMAX® coating; DTT2SS - stainless steel


Installation:

- See Holdown and Tension Tie General Notes on pp. 49-50.
- The HDU requires no additional washer; the DTT requires a standard-cut washer (included) be installed between the nut and the seat
- Strong-Drive SDS Heavy-Duty Connector screws install best with a low-speed high-torque drill with a 3%" hex-head driver.
- · Fasteners and crescent washer are included with the holdowns. For replacements, order part no. SDS25212-HDU_. (Fill in the size needed, e.g., HDU2.)

Codes: See p. 11 for Code Reference Key Chart

w

Horizontal HDU Offset Installation (plan view) See Holdown and Tension Tie General Notes. 6¹5/16"

70

71/8"

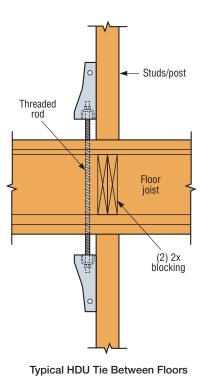
HDU/DTT

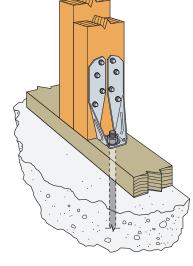
Holdowns (cont.)

These products are available with additional corrosion protection. For more information, see p. 14.

For stainless-steel fasteners, see p.21.

SD Many of these products are approved for installation with Strong-Drive® SD Connector screws. See pp. 348–352 for more information.


	Model No.		Dimensions (in.)					Fasteners (in.)	Minimum Wood	Allowable Tension Loads (160)			Code														
		Ga.	w	н	В	CL	S0	Anchor Bolt Dia. (in.)	Wood Fasteners	Member Size (in.)	DF/SP	SPF/HF	Deflection at Allowable Load (in.)	Ref.													
									(6) #9 x 1 ½" SD		840	840	0.17														
	DTT1Z	14	1½	71⁄8	17⁄16	3⁄4	3⁄16	3⁄8	(6) 0.148 x 1 ½	1½ x 5½	910	640	0.167														
									(8) 0.148 x 1 ½		910	850	0.167														
SS	DTT2Z								(8) ¼ x 1 ½ SDS	1½ x 3½	1,825	1,800	0.105														
	DITZZ	14	31⁄4	6 ¹⁵ ⁄16	1 5⁄8	¹³ ⁄16	3⁄16	1⁄2	(8) ¼ x 1 ½ SDS	3 x 3½	2,145	1,835	0.128														
SS	DTT2Z-SDS2.5																					(8) ¼ x 2½ SDS	3 x 3½	2,145	2,105	0.128	
	HDU2-SDS2.5	14	3	8 ¹¹ ⁄16	31⁄4	1 5⁄16	13⁄8	5⁄8	(6) ¼ x 2½ SDS	3 x 3½	3,075	2,215	0.088	IBC,													
	HDU4-SDS2.5	14	3	1015/16	31⁄4	1 5⁄16	1 3⁄8	5⁄8	(10) ¼ x 2½ SDS	3 x 3½	4,565	3,285	0.114	FL, LA													
	HDU5-SDS2.5	14	3	13¾6	31⁄4	1 5⁄16	1%	5⁄8	(14) ¼ x 2½ SDS	3 x 3½	5,645	4,340	0.115														
										3 x 3½	6,765	5,820	0.11														
	HDU8-SDS2.5	10	3	16%	3½	13⁄8	1½	7⁄8	(20) ¼ x 2½ SDS	31⁄2 x 31⁄2	6,970	5,995	0.116														
										31⁄2 x 41⁄2	7,870	6,580	0.113														
	HDU11-SDS2.5	10	3	221⁄4	3½	13%	1½	1	(30) ¼ x 2½ SDS	31⁄2 x 51⁄2	9,535	8,030	0.137														
	ND011-3D32.0	10	3	2274	3 72	1 78	1 72	1	(30) 74 X Z 72 3D3	31⁄2 x 71⁄4	11,175	9,610	0.137														
										3½ x 5½	10,770	9,260	0.122	_													
	HDU14-SDS2.5	7	3	2511/16	3½	1 %16	1 %16	1	(36) ¼ x 2½ SDS	3½ x 7¼	14,390	12,375	0.177	IBC,													
										5½ x 5½	14,445	12,425	0.172	FL, LA													


1. HDU14 requires heavy-hex anchor nut to achieve tabulated loads (supplied with holdown).

2. HDU14 loads on 4x6 post are applicable to installation on either the narrow or the wide face of the post.

3. Fasteners: Nail dimensions are listed diameter by length. SD and SDS screws are Simpson Strong-Tice® Strong-Drive SD Connector

and SDS Heavy-Duty Connector screws. See pp. 21-22 for fastener information.

Typical DTT2Z Installation

SIMPSON

Strong-Tie

MSTC48B3/MSTC66B3Z

Pre-Bent Straps

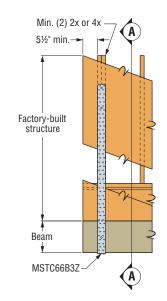
The MSTC48B3 and MSTC66B3Z are pre-bent straps designed to transfer tension load from an upper-story shearwall to a beam on the story below.

Material: 14 gauge

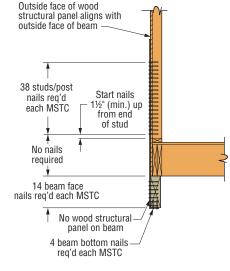
Finish: Galvanized. Some products available in ZMAX[®] coating; see Corrosion Information, pp. 12–15.

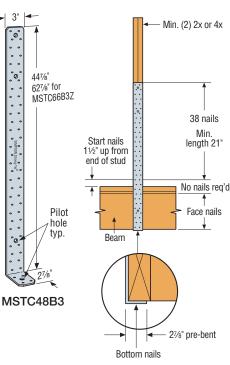
Codes: See p. 11 for Code Reference Key Chart

These products are available with additional corrosion protection. For more information, see p. 14.

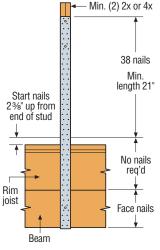

		Wood am		Fasteners (in.)		Allowable		
Model	Dimension (in.)		Be	am		Tensior	Code	
No.	Width	Depth	Fana	Dattam	Studs/ Post	DF/SP	SPF/HF	Ref.
	(min.)	(min.)	Face	Bottom		(160)	(160)	
MSTC48B3	3	91⁄4	(12) 0.148 x 3	(4) 0 1 4 9 y 2	(38) 0.148 x 3	3,975	3,900	IBC, FL,
MSTC66B3Z	3½	11 1⁄4	(14) 0.148 x 3	(4) 0.148 x 3	(30) U.140 X 3	4,490	4,490	LA

 Using fewer than 38 nails in the studs/post will reduce the allowable load of the connection. To calculate a reduced allowable load, use 199 lb. per nail for DF/SP or 172 lb. per nail for HF/SPF. Minimum length of extent of reduced nails may not be less than 21" as is shown in graphic.


- Nails in studs/post shall be installed symmetrically. Nails may be installed over the entire length of the strap in the studs/post.
- 3. The minimum 3"-wide beam may be made up of two 2x members.
- 4. MSTC48B3 and MSTC66B3Z installed over wood structural panel sheathing up
- to 1/2" thick achieve 0.85 of table loads.


C-C-2021 @ 2021 SIMPSON STRONG-TIE COMPANY INC.

- 5. PSL beam may be used in lieu of a standard-dimension lumber beam with no load reductions.
- 6. Multiply allowable loads by 1.85 to attain an allowable load for installations where two straps have been installed with a 11/2" clear space between straps.
- Structural composite lumber columns have sides that show either the wide face or the edges of the lumber strands/veneers known as the narrow face. Values in the tables reflect installation into the wide face. See technical bulletin T-C-SCLCLM at strongtie.com for load reductions resulting from narrow-face installations.
- 8. Fasteners: Nail dimensions are listed diameter by length. See pp. 21-22 for fastener information.



MSTC66B3Z Installation

MSTC66B3Z Installation with Rim Board

MST/MSTA/MSTC

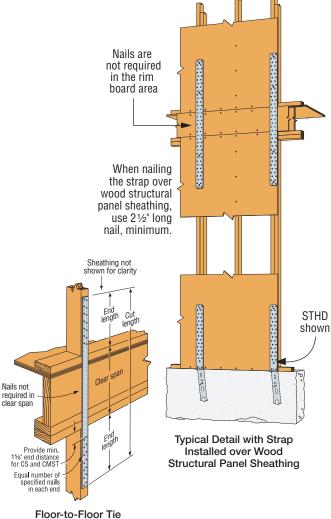
Strap Ties (cont.)

Codes: See p. 11 for Code Reference Key Chart

- These products are available with additional corrosion protection. For more information, see p. 14.
- Many of these products are approved for installation with Strong-Drive® SD SD Connector screws. See pp. 348-352 for more information.

Installation Showing a Clear Span

4,490


4,490

6,475

6,475

Floor to Floor Span Table

Model No.	Clear Span	Fasteners (Total)	Allowable Tension Loads (DF/SP)	Allowable Tension Loads (SPF/HF)	
NU.	(in.)	(in.)	(160)	(160)	
MSTA49	18	(26) 0.148 x 2½	2,020	2,020	
10151A49	16	(26) 0.148 x 2½	2,020	2,020	
MSTC28	18	(12) 0.148 x 31⁄4	1,150	995	
10101020	16	(16) 0.148 x 31⁄4	1,535	1,330	
	24	(20) 0.148 x 31⁄4	1,920	1,660	
MSTC40	18	(28) 0.148 x 31⁄4	2,690	2,325	
	16	(32) 0.148 x 31⁄4	3,070	2,655	
	24	(36) 0.148 x 31⁄4	3,455	2,990	
MSTC52	18	(44) 0.148 x 31⁄4	4,225	3,650	
	16	(48) 0.148 x 31⁄4	4,610	3,985	
	30	(48) 0.148 x 31⁄4	4,775	4,130	
MSTC66	24	(54) 0.148 x 31⁄4	5,375	4,645	
10131000	18	(64) 0.148 x 31⁄4	5,850	5,505	
	16	(68) 0.148 x 31⁄4	5,850	5,850	
	30	(64) 0.148 x 31⁄4	5,850	5,505	
MSTC78	24	(72) 0.148 x 31⁄4	5,850	5,850	
	18	(76) 0.148 x 31⁄4	5,850	5,850	
	24	(14) 0.162 x 21⁄2	1,720	1,500	
MST37	18	(20) 0.162 x 2½	2,460	2,140	
	16	(22) 0.162 x 21⁄2	2,705	2,355	
	24	(26) 0.162 x 2½	3,210	2,780	
MST48	18	(32) 0.162 x 2½	3,950	3,425	
	16	(34) 0.162 x 2½	4,200	3,640	
	30	(34) 0.162 x 2½	4,605	3,995	
MST60	24	(40) 0.162 x 2½	5,240	4,700	
	18	(46) 0.162 x 2½	6,235	5,405	
	30	(48) 0.162 x 2½	6,505	5,640	
MST72	24	(54) 0.162 x 2½	6,730	6,345	
	18	(62) 0.162 x 2½	6,730	6,475	

Code

Ref.

IBC,

FL, LA

4,150

4,150

See footnotes below.

MST60

MST72

Fasteners Allowable Tension Loads Allowable Tension Loads Dimensions (DF/SP) (SPF/HF) (in.) (Total) Model Ga. No. Bolts Nails Bolts Nails Bolts w L Nails (in.) Qty. Dia. (160) (160) (160) (160) MST27 21/16 27 (30) 0.162 x 21/2 4 1/2 3,700 2,165 3,210 2,000 MST37 (42) 0.162 x 21/2 5,070 3,030 4,495 2,800 12 21/16 371/2 6 1⁄2 21/16 MST48 48 (50) 0.162 x 21/2 8 1⁄2 5,310 3,675 5,190 3,395

6,730

6,730

72 1. See pp. 266–267 for Straps and Ties General Notes.

60

21/16

21/16

10

2. Install bolts or nails as specified by designer. Bolt and nail values may not be combined.

(68) 0.162 x 21/2

(68) 0.162 x 21/2

3. Allowable bolt loads are based on parallel-to-grain loading and minimum member thickness: MST - 21/2".

10

10

4. Splitting may be a problem with installations on lumber smaller than 31/2"; either fill every nail hole with 0.148" x 11/2" nails or fill every other hole with 0.162" x 21/2" nails. Reduce the allowable load based on the size and quantity of fasteners used.

1⁄2

1/2

5. Fasteners: Nail dimensions are listed diameter by length. See pp. 21-22 for fastener information.